15.曲線x2-xy+2y+1=0(x>2)上的點(diǎn)到x軸的距離的最小值為4+2$\sqrt{5}$.

分析 將曲線進(jìn)行轉(zhuǎn)化為函數(shù)形式,利用基本不等式的性質(zhì)進(jìn)行求解即可.

解答 解:由x2-xy+2y+1=0得x2+y(2-x)+1=0,
∵x>2,
∴y=$\frac{{x}^{2}+1}{x-2}$,
令t=x-2,則t>0,x=t+2
則函數(shù)等價(jià)為y=$\frac{(t+2)^{2}+1}{t}=\frac{{t}^{2}+4t+5}{t}$=t+$\frac{5}{t}$+4≥2$\sqrt{t•\frac{5}{t}}$+4=4+2$\sqrt{5}$,
當(dāng)且僅當(dāng)t=$\frac{5}{t}$,即t=$\sqrt{5}$時(shí),函數(shù)取得最小值,
即點(diǎn)到x軸的距離的最小值為4+2$\sqrt{5}$,
故答案為:4+2$\sqrt{5}$.

點(diǎn)評(píng) 本題主要考查曲線和方程的應(yīng)用,根據(jù)條件轉(zhuǎn)化為函數(shù)性質(zhì),利用換元法結(jié)合基本不等式的性質(zhì)是解決本題的關(guān)鍵,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在△ABC中,AB=AC=1,∠BAC=120°,點(diǎn)P在以A為圓心,AB為半徑的圓弧$\widehat{BC}$上運(yùn)動(dòng).
(Ⅰ)若$\overrightarrow{PC}$•$\overrightarrow{PB}$取最小值,求∠BAP的大;
(Ⅱ)設(shè)$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,其中x,y∈R,求xy的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知定義在正實(shí)數(shù)集上的函數(shù)f(x)=$\frac{1}{2}$x2+2ax,g(x)=3a2lnx+b,其中a>0.
(Ⅰ)若對(duì)于任意的b∈[0,2],函數(shù)h(x)=f(x)+g(x)-(2a+b)x在(0,4)上為單調(diào)遞增函數(shù),求a的取值范圍;
(Ⅱ)設(shè)兩曲線y=f(x),y=g(x)有公共點(diǎn),且在該點(diǎn)處的切線相同.
①用a表示b,并求b的最大值.
②求證:對(duì)于任意的x∈(0,+∞),都有f(x)≥g(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.某同學(xué)用球形模具自制棒棒糖.現(xiàn)熬制的糖漿恰好裝滿一圓柱形容器(底面半徑為3cm,高為10cm),共做了20顆完全相同的棒棒糖,則每個(gè)棒棒糖的表面積為9πcm2(損耗忽略不計(jì)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.據(jù)如表所示的樣本數(shù)據(jù),得到回歸直線方程$\widehat{y}=\widehatx+\widehat{a}$,其中$\widehat{a}$=9.1,則$\widehat$=( 。
 x 2 4
 y26  3949  54
A.9.4B.9.5C.9.6D.9.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知某車間加工零件的個(gè)數(shù)x與所花費(fèi)時(shí)間y(h)之間的線性回歸方程為$\widehat{y}$=0.01x+0.5,則加工600個(gè)零件大約需要6.5h.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.拋物線y2=4x的焦點(diǎn)到雙曲線${\frac{y^2}{3}}$-x2=1的漸近線的距離是( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.1D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.一個(gè)盒子里裝有大小均勻的6個(gè)小球,其中有紅色球4個(gè),編號(hào)分別為1,2,3,4,白色球2個(gè),編號(hào)分別為4,5,從盒子中任取3個(gè)小球(假設(shè)取到任何一個(gè)小球的可能性相同).
(1)求取出的3個(gè)小球中,含有編號(hào)為4的小球的概率;
(2)在取出的3個(gè)小球中,小球編號(hào)的最大值設(shè)為X,求隨機(jī)變量X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某學(xué)習(xí)小組有8個(gè)同學(xué),從男生中選2人,女生中選1人參加數(shù)學(xué)、物理、化學(xué)三種競賽,要求每科均有1人參加,共有180種不同的選法.那么該小組中男、女同學(xué)各有多少人?

查看答案和解析>>

同步練習(xí)冊(cè)答案