分析 (1)從盒子中任取3個(gè)小球,先求出基本事件總數(shù),再求出取出的3個(gè)小球中,含有編號為4的小球的基本事件個(gè)數(shù),由此能求出取出的3個(gè)小球中,含有編號為4的小球的概率.
(2)由題意得X的可能取值為3,4,5,分別求出相應(yīng)的概率,由此能求出隨機(jī)變量X的分布列.
解答 解:(1)∵一個(gè)盒子里裝有大小均勻的6個(gè)小球,其中有紅色球4個(gè),編號分別為1,2,3,4,
白色球2個(gè),編號分別為4,5,從盒子中任取3個(gè)小球,
基本事件總數(shù)n=${C}_{6}^{3}$=20,
取出的3個(gè)小球中,含有編號為4的小球的基本事件個(gè)數(shù)m=${C}_{2}^{1}{C}_{4}^{2}+{C}_{2}^{2}{C}_{4}^{1}$=16,
∴取出的3個(gè)小球中,含有編號為4的小球的概率p=$\frac{m}{n}$=$\frac{16}{20}$=$\frac{4}{5}$.
(2)由題意得X的可能取值為3,4,5,
P(X=3)=$\frac{{C}_{3}^{3}}{{C}_{6}^{3}}$=$\frac{1}{20}$,
P(X=4)=$\frac{{C}_{3}^{2}{C}_{2}^{1}}{{C}_{6}^{3}}$+$\frac{{C}_{3}^{1}{C}_{2}^{2}}{{C}_{6}^{3}}$=$\frac{9}{20}$,
P(X=5)=$\frac{{C}_{5}^{2}{C}_{1}^{1}}{{C}_{6}^{3}}$=$\frac{10}{20}$,
∴隨機(jī)變量X的分布列為:
X | 3 | 4 | 5 |
P | $\frac{1}{20}$ | $\frac{9}{20}$ | $\frac{10}{20}$ |
點(diǎn)評 本題考查概率的求法,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意排列組合知識的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1-$\sqrt{3}$ | B. | 1+$\sqrt{3}$ | C. | 1±$\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{5}{9}$ | D. | $\frac{4}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\frac{1}{2}$ | C. | 2 | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p或q為真命題 | B. | ¬p且¬q為真命題 | C. | p或q為假命題 | D. | ¬p或¬q為假命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
產(chǎn)品編號 | ① | ② | ③ | ④ | ⑤ |
電壓(x) | 10 | 15 | 20 | 25 | 30 |
電流(y) | 0.6 | 0.8 | 1.4 | 1.2 | 1.5 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com