11.函數(shù)$f(x)=\frac{1}{{\sqrt{4-x}}}$的定義域是(  )
A.(-∞,4)B.(-∞,4]C.(4,+∞)D.[4,+∞)

分析 由分式中分母不等于0,根式內(nèi)部的代數(shù)式大于等于0,求解可得答案.

解答 解:由4-x>0,
得x<4.
∴函數(shù)$f(x)=\frac{1}{{\sqrt{4-x}}}$的定義域是:(-∞,4).
故選:A.

點評 本題考查了函數(shù)的定義域及其求法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.等差數(shù)列{an}中,a2=15,a4=9,則S5=60.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在四棱柱ABCD-A1B1C1D1中,側(cè)棱AA1⊥底面ABCD,底面ABCD是直角梯形,AD∥BC,∠BAD=90°,AD=AA1=3,BC=1,AB=$\sqrt{3}$,E1為A1B1中點.
(1)證明:B1D∥平面AD1E1
(2)求平面ACD1和平面CDD1C1所成角(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c.若b=3,c=2$\sqrt{3}$,A=30°,求角B、C及邊a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知三棱錐 S-ABC的所有頂點都在球O的球面上,SA⊥平面ABC,SA=2$\sqrt{3}$,AB=1,AC=2,∠BAC=60°,則球O的體積為( 。
A.B.$\frac{32}{3}π$C.$\frac{16}{3}π$D.12π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知集合A={x|(a-1)x2-x+2=0}有且只有一個元素,則a=1或$\frac{9}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知命題p:|x-$\frac{3}{4}$|≤$\frac{1}{4}$,命題q:(x-a)(x-a-1)≤0,若p是q成立的充分非必要條件,則實數(shù)a的取值范圍是[0,$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在△ABC中,$\frac{sinA}{cosA}$=$\frac{2cosC+cosA}{2sinC-sinA}$是角A,B,C成等差數(shù)列的充分不必要條件.(充分不必要條件,充要條件,必要不充分條件)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{{2}^{x}+b}{{2}^{x}+a}$,是定義在R上的奇函數(shù).
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)求函數(shù)f(x)的值域.

查看答案和解析>>

同步練習(xí)冊答案