【題目】下列命題中:

①已知點(diǎn),動(dòng)點(diǎn)滿足,則點(diǎn)的軌跡是一個(gè)圓;

②已知,則動(dòng)點(diǎn)的軌跡是雙曲線;

③兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值就越接近于1

④在平面直角坐標(biāo)系內(nèi),到點(diǎn)和直線的距離相等的點(diǎn)的軌跡是拋物線;

正確的命題是_________

【答案】①③

【解析】

根據(jù)軌跡方程的求解,以及雙曲線的定義,相關(guān)系數(shù)的性質(zhì),結(jié)合選項(xiàng)進(jìn)行逐一分析即可.

①:設(shè)動(dòng)點(diǎn),由,故可得

整理得:,且,故該方程表示圓,則①正確;

②:根據(jù)雙曲線的定義,

則動(dòng)點(diǎn)的軌跡只表示雙曲線的左支,故②錯(cuò)誤;

③:根據(jù)相關(guān)系數(shù)的性質(zhì),相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值就越接近于1,故③正確;

④:因?yàn)辄c(diǎn)在直線上,

故滿足題意的點(diǎn)的軌跡為過點(diǎn)且垂直于直線的直線,故④錯(cuò)誤.

故答案為:①③.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知AB是圓O的直徑,CD是圓上不同兩點(diǎn),且,O所在平面.

1)求直線PBCD所成角;

2)若PB與圓O所在平面所成角為,且,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓)的離心率是,點(diǎn)在短軸上,且

(1)球橢圓的方程;

(2)設(shè)為坐標(biāo)原點(diǎn),過點(diǎn)的動(dòng)直線與橢圓交于兩點(diǎn)。是否存在常數(shù),使得為定值?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電動(dòng)車售后服務(wù)調(diào)研小組從汽車市場(chǎng)上隨機(jī)抽取20輛純電動(dòng)汽車調(diào)查其續(xù)駛里程(單次充電后能行駛的最大里程),被調(diào)查汽車的續(xù)駛里程全部介于50公里和300公里之間,將統(tǒng)計(jì)結(jié)果分成5組:,繪制成如圖所示的頻率分布直方圖.

1)求續(xù)駛里程在的車輛數(shù);

2)求續(xù)駛里程的平均數(shù);

3)若從續(xù)駛里程在的車輛中隨機(jī)抽取2輛車,求其中恰有一輛車的續(xù)駛里程在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,等腰中,,,點(diǎn),為線段的四等分點(diǎn),且.現(xiàn)沿,折疊成圖2所示的幾何體,使.

(圖1

(圖2

1)證明:平面;

2)求幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年某飲料公司計(jì)劃從兩款新配方飲料中選擇一款進(jìn)行新品推介,現(xiàn)對(duì)這兩款飲料進(jìn)行市場(chǎng)調(diào)查,讓接受調(diào)查的受訪者同時(shí)飲用這兩種飲料,并分別對(duì)兩款飲料進(jìn)行評(píng)分,現(xiàn)對(duì)接受調(diào)查的100萬(wàn)名受訪者的評(píng)分進(jìn)行整理得到如下統(tǒng)計(jì)圖.

從對(duì)以往調(diào)查數(shù)據(jù)分析可以得出如下結(jié)論:評(píng)分在的受訪者中有會(huì)購(gòu)買,評(píng)分在的受訪者中有會(huì)購(gòu)買,評(píng)分在的受訪者中有會(huì)購(gòu)買.

(Ⅰ)在受訪的100萬(wàn)人中,求對(duì)款飲料評(píng)分在60分以下的人數(shù)(單位:萬(wàn)人);

(Ⅱ)現(xiàn)從受訪者中隨機(jī)抽取1人進(jìn)行調(diào)查,試估計(jì)該受訪者購(gòu)買款飲料的可能性高于購(gòu)買款飲料的可能性的概率;

(Ⅲ)如果你是決策者,新品推介你會(huì)主推哪一款飲料,并說(shuō)明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在極坐標(biāo)系中,已知曲線的方程為,曲線的方程為.以極點(diǎn)為原點(diǎn),極軸為軸正半軸建立直角坐標(biāo)系

(1)求曲線,的直角坐標(biāo)方程;

(2)若曲線軸相交于點(diǎn),與曲線相交于,兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在底面為正方形的四棱錐中,平面,點(diǎn),分別在棱,上,且滿足.

(1)證明:平面;

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),的在數(shù)集上都有定義,對(duì)于任意的,當(dāng)時(shí),成立,則稱是數(shù)集的限制函數(shù).

(1)求上的限制函數(shù)的解析式;

(2)證明:如果在區(qū)間上恒為正值,則上是增函數(shù);[注:如果在區(qū)間上恒為負(fù)值,則在區(qū)間上是減函數(shù),此結(jié)論無(wú)需證明,可以直接應(yīng)用]

(3)利用(2)的結(jié)論,求函數(shù)上的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案