方程cos2x+sinx=1在(0,π)上的解集是
 
考點(diǎn):根的存在性及根的個(gè)數(shù)判斷
專題:計(jì)算題,三角函數(shù)的圖像與性質(zhì)
分析:cos2x+sinx=1可化為1-2sin2x+sinx=1;即sinx(1-2sinx)=0;從而求解.
解答: 解:cos2x+sinx=1可化為
1-2sin2x+sinx=1;
即sinx(1-2sinx)=0;
∵x∈(0,π),
∴sinx=
1
2
;
∴x=
π
6
6
;
故答案為:{
π
6
6
}.
點(diǎn)評(píng):本題考查了三角函數(shù)的化簡(jiǎn)與求值,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=Asin(?x+φ)(A>0,?>0,|φ|<
π
2
)在區(qū)間[-
π
6
,
6
]上的圖象如圖所示.
(Ⅰ)求f(x)的解析式;
(Ⅱ)設(shè)△ABC三內(nèi)角A,B,C所對(duì)邊分別為a,b,c且
cosB
bcosC
=
1
2a-c
,求f(x)在(0,B]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y1=a•x2,y2=c•2x,y3=b•x3,則由表中數(shù)據(jù)確定f(x),g(x),h(x)依次對(duì)應(yīng)( 。
xf(x)g(x)h(x)
120.20.2
550253.2
10200200102.4
A、y1,y2,y3
B、y2,y1,y3
C、y3,y2,y1
D、y1,y3,y2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin(x-
π
3
)sin(x+
π
3
),g(x)=
3
2
sin2x+
1
4

(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)h(x)=f(x)+g(x)的最小值,并求使h(x)取得最小值時(shí)x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}滿足an+1=
2an,0≤an
1
2
2an-1,
1
2
an<1
,若a1=
3
5
,則a2014=(  )
A、
1
5
B、
2
5
C、
3
5
D、
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=max{sinx,cosx}的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,若(2a-c)cosB=bcosC.
(Ⅰ)求角B的大;
(Ⅱ)若a=3,△ABC的面積為
3
3
2
,求
BA
AC
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在正方體ABCD-A1B1C1D1中,E、F、G、H分別是棱CC1、C1D1、D1D、CD的中點(diǎn),N是BC的中點(diǎn),點(diǎn)M在四邊形EFGH及其內(nèi)部運(yùn)動(dòng),則M滿足
 
時(shí),有MN∥平面B1BDD1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

黃種人群中各種血型的人所占的比例如下表所示:
血型ABABO
該血型的人所占的比例(%)28%29%8%35%
若按如下原則輸血,同種血型的人可以輸血,O型血可以輸給任何一種血型的人,任何血型的人血都可以輸給AB型血的人,其他不同血型的人不能互相輸血,問(wèn):
(1)任找一個(gè)人,其血可以輸給B型血病人的概率是多少?
(2)任找一個(gè)人,其血可以輸給A型血病人或B型血病人的概率是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案