18.?dāng)?shù)列{an}滿足a1=1,nan+1=(n+1)an+n(n+1),n∈N*
(1)證明:數(shù)列{$\frac{{a}_{n}}{n}$}是等差數(shù)列;
(2)設(shè)${b_n}=\frac{1}{{\sqrt{a_n}•\sqrt{{a_{n+1}}}}}$,求數(shù)列{bn}的前n項(xiàng)和Sn

分析 (1)由nan+1=(n+1)an+n(n+1),n∈N*,兩邊同除以n(n+1)可得:$\frac{{a}_{n+1}}{n+1}$-$\frac{{a}_{n}}{n}$=1,即可證明.
(2)由(1)可得:$\frac{{a}_{n}}{n}$=n,可得bn=$\frac{1}{n}-\frac{1}{n+1}$,再利用“裂項(xiàng)求和”方法即可得出.

解答 (1)證明:∵nan+1=(n+1)an+n(n+1),n∈N*,∴$\frac{{a}_{n+1}}{n+1}$-$\frac{{a}_{n}}{n}$=1,
∴數(shù)列{$\frac{{a}_{n}}{n}$}是等差數(shù)列,首項(xiàng)為1,公差為1.
(2)解:由(1)可得:$\frac{{a}_{n}}{n}$=1+(n-1)=n,∴an=n2
∴${b_n}=\frac{1}{{\sqrt{a_n}•\sqrt{{a_{n+1}}}}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,
∴數(shù)列{bn}的前n項(xiàng)和Sn=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})$=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$.

點(diǎn)評(píng) 本題考查了遞推關(guān)系、等差數(shù)列的定義及其通項(xiàng)公式、“裂項(xiàng)求和”方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.6人站成一排,甲、乙、丙3人必須站在一起的所有排列的總數(shù)為( 。
A.A${\;}_{6}^{6}$B.3A${\;}_{3}^{3}$C.A${\;}_{3}^{3}$•A${\;}_{3}^{3}$D.4!•3!

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知整數(shù)對(duì)的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,則第70個(gè)數(shù)對(duì)是(  )
A.(5,8)B.(4,10)C.(8,4)D.(4,9)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在等差數(shù)列{an}中,已知a3+a5=2,則a4=( 。
A.$\frac{1}{3}$B.1C.$\frac{1}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.?dāng)?shù)列{an}中,a1=2,an+1=an+3,若an=29,則n=( 。
A.8B.9C.10D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知直線l:ax+y-2=0在x軸和y軸上的截距相等,則實(shí)數(shù)a的值是(  )
A.1B.-1C.-2或-1D.-2或1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,過點(diǎn)F1的直線l交橢圓于A,B兩點(diǎn),|AB|的最小值為3,且△ABF2的周長為8.
(1)求橢圓的方程;
(2)當(dāng)直線l不垂直于x軸時(shí),點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)為A′,直線A′B交x軸于點(diǎn)M,求△ABM面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某校迎新晚會(huì)結(jié)束后,學(xué)校就觀眾是否喜歡歌舞類節(jié)目進(jìn)行了調(diào)查.
(1)學(xué)校從觀看晚會(huì)的5名觀眾A,B,C,D,E中隨機(jī)抽取2人進(jìn)行訪談,求觀眾A和B至少有1人被抽中的概率.
(2)學(xué)校從現(xiàn)場(chǎng)抽取100名觀眾進(jìn)行調(diào)查,經(jīng)數(shù)據(jù)處理后得到如圖圖表:

請(qǐng)根據(jù)圖表的數(shù)據(jù)信息,完成下列2×2列聯(lián)表的填寫,并說明有多大的把握認(rèn)為“是否喜歡歌舞類節(jié)目和性別有關(guān)”.
喜歡歌舞類節(jié)目不喜歡歌舞類節(jié)目合計(jì)
男性
女性
合計(jì)
注:K2=$\frac{{n{{({ad-bc})}^2}}}{{({a+b})({a+d})({a+c})({b+d})}}$
P(K2≥k00.150,100.050.025
k02.0722.7063.8415.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.sin1200°的值是( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{2}}}{2}$D.-$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案