2.$\frac{2sin2α}{1+cos2α}$•$\frac{co{s}^{2}α}{cos2α}$=tan2α.

分析 利用二倍角公式以及弦切互化,求解即可.

解答 解:$\frac{2sin2α}{1+cos2α}$•$\frac{co{s}^{2}α}{cos2α}$=$\frac{2sin2α}{1+2{cos}^{2}α-1}•\frac{co{s}^{2}α}{cos2α}$=tan2α.
故答案為:tan2α.

點(diǎn)評 本題考查三角函數(shù)的化簡求值,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{3},}&{x≥a}\\{-{x}^{2},}&{x<a}\end{array}\right.$,a∈R,若存在實(shí)數(shù)b,使函數(shù)g(x)=f(x)-b有兩個零點(diǎn),則實(shí)數(shù)a的取值范圍為(-∞,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)滿足對任意x∈R都有f(x)+f(-x)=0,且在(-∞,0]上的圖象如圖所示,則關(guān)于x的不等式$\frac{f(x)-f(-x)}{x}$<0的解集為( 。
A.(-∞,-2)∪(2,+∞)B.(-2,0)∪(2,+∞)C.(-2,2)D.(-∞,-2)∪(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.己知|$\overrightarrow{a}$|=|$\overrightarrow$|=1,且$\overrightarrow{a}$與$\overrightarrow$的夾角為60°
(I)求|$\overrightarrow{a}$+$\overrightarrow$|與|$\overrightarrow{a}$-2$\overrightarrow$|;
(Ⅱ)求$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-2$\overrightarrow$的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.如果關(guān)于x的不等式x2-(a-1)x+1<0的解集為∅,則實(shí)數(shù)a的取值范圍是(-1,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在三棱錐C-ABD中,△ABD與△CBD是全等的等腰直角三角形,O為斜邊BD的中點(diǎn),AB=4,二面角A-BD-C的大小為$\frac{π}{6}$并給出下面結(jié)論:
(1)AC⊥BD;  (2)AD⊥CO;  (3)△AOC為正三角形; (4)cos∠ADC=$\frac{3}{4}$;
(5)四面體ABCD的外接球表面積為32π,
其中真命題個數(shù)是(1)(5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.定義在實(shí)數(shù)集R上的函數(shù)f(x),如果存在函數(shù)g(x)=Ax+B(A,B為常數(shù)),使得f(x)≥g(x)對一切實(shí)數(shù)x都成立,那么稱g(x)為函數(shù)f(x)的一個承托函數(shù).下列說法正確的有:①③.(寫出所有正確說法的序號)
①對給定的函數(shù)f(x),對承托函數(shù)可能不存在,也可能有無數(shù)個;
②定義域和值域都是R的函數(shù)f(x),不存在承托函數(shù);
③g(x)=ex為函數(shù)f(x)=ex的一個承托函數(shù);
④函數(shù)f(x)=$\frac{x}{{x}^{2}+x+1}$不存在承托函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知命題p:對任意x∈R,總有|x|≥0;命題q:x=2是方程x+2=0的根.則下列命題為真命題的是( 。
A.p∧¬qB.¬p∧qC.¬p∧¬qD.p∧q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.一個幾何體的三視圖如圖所示,則這個幾何體外接球的體積為( 。
A.1000$\sqrt{2}$πB.200πC.$\frac{200}{3}$πD.$\frac{1000\sqrt{2}}{3}$π

查看答案和解析>>

同步練習(xí)冊答案