在平面直角坐標系中,已知橢圓:的離心率,且橢圓C上一點到點Q的距離最大值為4,過點的直線交橢圓于點
(Ⅰ)求橢圓C的方程;
(Ⅱ)設P為橢圓上一點,且滿足(O為坐標原點),當時,求實數(shù)的取值范圍.
(1);(2)或
【解析】
試題分析:本題主要考查橢圓的標準方程和幾何性質、直線的方程、平面內兩點間距離公式等基礎知識,考查用代數(shù)方法研究圓錐曲線的性質以及數(shù)形結合的數(shù)學思想方法,考查運算求解能力、綜合分析和解決問題的能力.第一問,先利用離心率列出表達式找到與的關系,又因為橢圓上的點到點的距離最大值為4,利用兩點間距離公式列出表達式,因為在橢圓上,所以,代入表達式,利用配方 法求最大值,從而求出,所以,所以得到橢圓的標準方程;第二問,先設點坐標,由題意設出直線方程,因為直線與橢圓相交,列出方程組,消參韋達定理得到兩根之和、兩根之積,用坐標表示得出,由于點在橢圓上,得到一個表達式,再由,得到一個表達式,2個表達式聯(lián)立,得到的取值范圍.
試題解析:(Ⅰ)∵ ∴ (1分)
則橢圓方程為即
設則
當時,有最大值為
解得∴,橢圓方程是 (4分)
(Ⅱ)設方程為
由 整理得.
由,得.
(6分)
∴ 則,
由點P在橢圓上,得化簡得① (8分)
又由即將,代入得
化簡,得
則, ∴② (10分)
由①,得
聯(lián)立②,解得∴或 (12分)
考點:1.橢圓的標準方程;2.兩點間的距離公式;3.配方法求函數(shù)最值;4.韋達定理.
科目:高中數(shù)學 來源: 題型:
π | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
π |
2 |
3π |
2 |
AC |
BC |
π |
2 |
2 |
3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com