15.已知平面α、β和直線a、b,若α∥β,a?α,b?β,則a、b的位置關(guān)系可能為平行或異面.

分析 由α,β平行可知a,b不相交,

解答 解:∵α∥β,a?α,b?β,∴a,b沒有公共點(diǎn),即a,b不相交.
作平面γ,與α,β的交線分別為m,n,則由面面平行的性質(zhì)可得:m∥n.
(1)若a∥m,b∥n,則a∥b.
(2)若a∥m,b與n相交,則a與b不平行,即a,b異面.
故答案為:平行或異面.

點(diǎn)評(píng) 本題考查了空間直線的位置關(guān)系判斷,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知向量$\overrightarrow{a}$=(1,-1),$\overrightarrow$=(6,-4),若$\overrightarrow{a}$⊥(t$\overrightarrow{a}$+$\overrightarrow$),則實(shí)數(shù)t的值為-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知向量$\overrightarrow{m}$=(2cosx,1),$\overrightarrow{n}$=(cosx,$\sqrt{3}$sin2x),函數(shù)f(x)=$\overrightarrow{m}$$•\overrightarrow{n}$+2016
(1)化簡f(x)的解析式,求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,已知f(A)=2018,a=4,△ABC的面積為4$\sqrt{3}$,試判定△ABC的形狀,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知(1+x)n=a0+a1x+a2x2+…+anxn,若a0+a1+a2+…+an=16.則自然數(shù)n等于( 。
A.6B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖,點(diǎn)列{An}、{Bn}分別在某銳角的兩邊上,且|AnAn+1|=|An+1An+2|,An≠An+1,n∈N*,|BnBn+1|=|Bn+1Bn+2|,Bn≠Bn+1,n∈N*,(P≠Q(mào)表示點(diǎn)P與Q不重合)若dn=|AnBn|,Sn為△AnBnBn+1的面積,則( 。
A.{Sn}是等差數(shù)列B.{Sn2}是等差數(shù)列C.{dn}是等差數(shù)列D.{dn2}是等差數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知∠A,∠B為△ABC的內(nèi)角,且(1+tanA)(1+tanB)=2,求∠A+∠B的度數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,四棱錐P-ABCD的底面為正方形,PD⊥平面ABCD,M為PC中點(diǎn).
(1)求證:AP∥平面MBD;
(2)若AD=PD,求直線PB與平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若實(shí)數(shù)a,b,c,d滿足|b+$\frac{1}{2}$a2-4lna|+|3c-d+2|=0,則(a-c)2+(b-d)2的最小值為$\frac{121}{40}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)全集U=R,集合A={x|x2-x-2<0},B={x|1<x<3},則A∪B={x|-1<x<3},∁RA={x|x≤-1或x≥2}.

查看答案和解析>>

同步練習(xí)冊(cè)答案