已知m,n,x,y均為正實(shí)數(shù),且m≠n,則有
m2
x
+
n2
y
(m+n)2
x+y
,且當(dāng)
m
x
=
n
y
時(shí)等號(hào)成立,利用此結(jié)論,可求函數(shù)f(x)=
4
3x
+
3
1-x
,x∈(0,1)的最小值為
 
考點(diǎn):不等式的基本性質(zhì)
專(zhuān)題:不等式
分析:f(x)轉(zhuǎn)化為f(x)═
22
3x
+
32
3-3x
,利用所告訴的結(jié)論,得出f(x)≥
25
3
,問(wèn)題得以解決
解答: 解:∵m,n,x,y均為正實(shí)數(shù),且m≠n,則有
m2
x
+
n2
y
(m+n)2
x+y
,且當(dāng)
m
x
=
n
y
時(shí)等號(hào)成立,
∴f(x)=
4
3x
+
3
1-x
=
4
3x
+
32
3-3x
=
22
3x
+
32
3-3x
(2+3)2
3x+3-3x
=
25
3
,當(dāng)且僅當(dāng)
2
3x
=
3
3-3x
時(shí)等號(hào)成立,即當(dāng)x=
2
5
∈(0,1)時(shí)取等號(hào),
∴函數(shù)f(x)的最小值為:
25
3

故答案為:
25
3
點(diǎn)評(píng):本題考查了新知識(shí)的應(yīng)用,轉(zhuǎn)化為同形式是關(guān)鍵,屬于基礎(chǔ)題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若方程|-x2+4x-3|=kx有三個(gè)實(shí)數(shù)解,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f1(x)=2x-1,f2(x)=x2,數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=f2(n),數(shù)列{bn}中,b1=2,bn=f1(bn-1).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求證:數(shù)列{bn-1}是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知下列命題,其中正確命題的個(gè)數(shù)是( 。
①以直角三角形的一邊為對(duì)稱(chēng)軸旋轉(zhuǎn)一周所得的旋轉(zhuǎn)體是圓錐
②以直角梯形的一腰為對(duì)稱(chēng)軸旋轉(zhuǎn)一周所得的旋轉(zhuǎn)體是圓臺(tái)
③圓柱、圓錐、圓臺(tái)的底面都是圓
④一個(gè)平面去截一個(gè)圓錐得到一個(gè)圓錐和一個(gè)圓臺(tái).
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線l1:y=x+a和l1:y=x+b將單位圓C:x2+y2=1分成長(zhǎng)度相等的四段弧,則a2+b2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若直線y=2x+t被圓x2+y2=8截得的弦長(zhǎng)大于等于
4
2
3
,則t的取值范圍為     ( 。
A、[-
8
5
3
,
8
5
3
]
B、(-
8
5
3
,
8
5
3
C、[
8
5
3
,+∞)
D、(-∞,
8
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一對(duì)年輕夫婦和其兩歲的孩子做游戲,讓孩子把分別寫(xiě)有“ONE”,“WORLD”,“ONE”,“DREAM”的四張卡片隨機(jī)排成一排,若卡片按從左到右的順序排成“ONE WORLD ONE DREAM”,則孩子會(huì)得到父母的獎(jiǎng)勵(lì),那么孩子受獎(jiǎng)勵(lì)的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

動(dòng)點(diǎn)A到定點(diǎn)F1(-2,0)和2(2,0)的距離的和為4,則動(dòng)點(diǎn)A的軌跡為( 。
A、橢圓B、線段
C、無(wú)圖形D、兩條射線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=log2(4+3x-x2)的單調(diào)遞減區(qū)間是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案