設(shè)數(shù)列{an}的首項為3,數(shù)列{bn}為等差數(shù)列,且bn=an+1-an(n∈N*),若b2=-4,b9=10,則數(shù)列{an}的通項公式為an=
 
考點:數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:首先利用等差數(shù)列求出數(shù)列bn=2n-8,根據(jù)bn=an+1-an的特點,進(jìn)一步利用疊加法求數(shù)列
{an}的通項公式.
解答: 解:數(shù)列{bn}為等差數(shù)列,b2=-4,b9=10,
設(shè)首相為b1,公差為d,
則:
b2=-4
b9=9

解得:d=2,b1=-6,
所以:bn=2n-8,
由于:bn=an+1-an,
則:an-an-1=2(n-1)-8,
an-1-an-2=2(n-2)-8,

a2-a1=2•1-8,
所以:利用疊加法求得:an-a1=2(1+2+…+n-1)-8n,
解得:an=n2-9n+3,
故答案為:n2-9n+3.
點評:本題考查的知識要點:等差數(shù)列通項公式的應(yīng)用,疊加法在數(shù)列求通項公式中的應(yīng)用.屬于基礎(chǔ)題型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,已知a1=2,a2=2,記an與an+1(n∈N+)的積得個位數(shù)為an+2,則a2015=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y屬于實數(shù),求
x2+y2
+
(x-1)2+y2
+
x2+(y-1)2
+
(x-1)2+(y-1)2
最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

全集U=R,設(shè)集合A={x|-x2-2x+3≥0},B={x||x+1|>1},求:
(1)A∩B,A∪B;
(2)∁UA,∁UB;
(3)∁UA∩∁UB,∁UA∪∁UB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用反證法證明命題:若p則q.其第一步是反設(shè)命題的結(jié)論不成立,這個正確的反設(shè)是( 。
A、若p,則¬qB、若¬p,則q
C、¬pD、¬q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

要得到函數(shù)y=cos(
x
2
-
π
4
)的圖象,只需將y=sin
x
2
的圖象
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方體ABCD-A1B1C1D1,平面BB1C1C內(nèi)到直線AA1和直線BC距離相等的點的軌跡是( 。
A、圓B、橢圓C、雙曲線D、拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下對象的全體不能構(gòu)成集合的個數(shù)是( 。
(1)高一(1)班的高個子同學(xué);
(2)所有的數(shù)學(xué)難題;
(3)北京市中考分?jǐn)?shù)580以上的同學(xué);
(4)中國古代四大發(fā)明;
(5)我國的大河流;
(6)大于3的偶數(shù).
A、2B、3C、4D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,一個三角形的綠地ABC,AB邊的長為7m,由C點看AB的張角為45°,在AC邊上一點D處看AB的張角為60°,且AD=2DC,試求這塊綠地的面積.

查看答案和解析>>

同步練習(xí)冊答案