9.如圖1點M,N分別是正方體ABCD-A1B1C1D1的棱A1D1CC1的中點,過點D,M,N做截面去截正方體得到的新幾何體(體積較大部分),則該新幾何體的主視圖、左視圖、俯視圖依次為( 。
A.①④⑤B.②③⑥C.①③⑤D.②④⑥

分析 作出截面多邊形,根據(jù)截面與正方體的棱的交點位置進行判斷.

解答 解:過N作NE∥DM交B1C1于E,則E為B1C1的靠近C1的四等分點,連結(jié)ME,則梯形DNEM為截面四邊形.
∴多面體BCNEB1-ADMA1為新得到的幾何體.
∴新幾何體的主視圖為①,左視圖為④,俯視圖為⑤.
故選:A.

點評 本題考查了簡單幾何體的三視圖,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

3.已知等比數(shù)列{an}中,a5=48,a15=3,求a20

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.己知函數(shù)f(x)=-$\frac{1}{3}{x^3}+{x^2}$,g(x)=f (x)+f′(x),討論g(x)的單調(diào)性,并求g(x)在區(qū)間[1,2]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.設(shè)拋物線C:y2=4x的焦點為F,過F的直線l與拋物線交于A,B兩點,M為拋物線C的準線與x軸的交點,若$tan∠AMB=2\sqrt{2}$,則|AB|=( 。
A.4B.8C.$3\sqrt{2}$D.10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.對于n∈N*,將n表示為$n={a_0}•{2^k}+{a_1}•{2^{k-1}}+…+{a_{k-1}}•{2^1}+{a_k}•{2^0}$,
當i=0時,ai=1,
當1≤i≤k時,ai=0或1.
記I(n)為上述表示中a為0的個數(shù)(例如:1=1•20,4=1•22+0•21+0•20,所以I(1)=0,I(4)=2),
則(1)I(12)=2,(2)I(1)+I(2)+…+I(2048)=9228.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的離心率$e=\frac{{2\sqrt{5}}}{5}$,左頂點A與右焦點F的距離$AF=2+\sqrt{5}$.
(1)求橢圓C的方程;
(2)過右焦點F作斜率為k的直線l與橢圓C交于M,N兩點,P(2,1)為定點,當△MNP的面積最大時,求l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦點分別為F1,F(xiàn)2,橢圓C過點$M({0,\sqrt{3}})$,且△MF1F2為正三角形.
(1)求橢圓C的方程;
(2)垂直于x軸的直線與橢圓C交于A、B兩點,過點P(4,0)的直線PB交橢圓C于另一點E,證明:直線AE與x軸相交于定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知$cos(α+\frac{π}{4})=\frac{{\sqrt{2}}}{4}$,則sin2α=( 。
A.$\frac{1}{8}$B.$\frac{3}{4}$C.$-\frac{1}{8}$D.$-\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知橢圓的長軸長為22,短軸長為16,則橢圓上的點到橢圓中心距離的取值范圍是( 。
A.[6,10]B.[6,8]C.[8,10]D.[8,11]

查看答案和解析>>

同步練習冊答案