【題目】點(diǎn)是函數(shù)的圖象的一個(gè)對稱中心,且點(diǎn)到該圖象的對稱軸的距離的最小值為.
①的最小正周期是;
②的值域?yàn)?/span>;
③的初相為;
④在上單調(diào)遞增.
以上說法正確的個(gè)數(shù)是( )
A. B. C. D.
【答案】D
【解析】
由條件利用正弦函數(shù)的周期性、單調(diào)性、最值,以及圖象的對稱性,即可得出結(jié)論.
∵點(diǎn)P(﹣,1)是函數(shù)f(x)=sin(ωx+φ)+m(ω>0,|φ|<)的圖象的一個(gè)對稱中心,∴m=1,ω(﹣)+φ=kπ,k∈Z.
∵點(diǎn)P到該圖象的對稱軸的距離的最小值為,∴ω=2,
∴φ=kπ+, k∈Z,又|φ|<∴φ=,f(x)=sin(2x+)+1.
故①f(x)的最小正周期是π,正確;②f(x)的值域?yàn)?/span>[0,2],正確;
③f(x)的初相φ為,正確;
④在[,2π]上,2x+∈[,],根據(jù)函數(shù)的周期性,函數(shù)單調(diào)性與 [﹣,]時(shí)的單調(diào)性相同,故函數(shù)f(x)單調(diào)遞增,故④正確,
故選:D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】表示一位騎自行車和一位騎摩托車的旅行者在相距80 km的甲、乙兩城間從甲城到乙城所行駛的路程與時(shí)間之間的函數(shù)關(guān)系,有人根據(jù)函數(shù)圖象,提出了關(guān)于這兩個(gè)旅行者的如下信息:
①騎自行車者比騎摩托車者早出發(fā)3 h,晚到1 h;
②騎自行車者是變速運(yùn)動,騎摩托車者是勻速運(yùn)動;
③騎摩托車者在出發(fā)1.5 h后追上了騎自行車者;
④騎摩托車者在出發(fā)1.5 h后與騎自行車者速度一樣.
其中,正確信息的序號是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直角的三邊長,滿足.
(Ⅰ)在之間插入個(gè)數(shù),使這個(gè)數(shù)構(gòu)成以為首項(xiàng)的等差數(shù)列,且它們的和為,求斜邊的最小值;
(Ⅱ)已知均為正整數(shù),且成等差數(shù)列,將滿足條件的三角形的面積從小到大排成一列,且,求滿足不等式的所有的值;
(Ⅲ)已知成等比數(shù)列,若數(shù)列滿足,證明:數(shù)列中的任意連續(xù)三項(xiàng)為邊長均可以構(gòu)成直角三角形,且是正整數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù),
(1)若函數(shù)為奇函數(shù),求m的值;
(2)若函數(shù)在上是增函數(shù),求實(shí)數(shù)m的取值范圍;
(3)若函數(shù)在上的最小值為,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我們稱一個(gè)非負(fù)整數(shù)集合(非空)為好集合,若對任意,或者,或者.以下記為的元素個(gè)數(shù).
(Ⅰ)給出所有的元素均小于的好集合;(給出結(jié)論即可)
(Ⅱ)求出所有滿足的好集合;(同時(shí)說明理由)
(Ⅲ)若好集合滿足,求證: 中存在元素,使得中所有元素均為的整數(shù)倍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某銀行對某市最近5年住房貸款發(fā)放情況(按每年6月份與前一年6月份為1年統(tǒng)計(jì))作了統(tǒng)計(jì)調(diào)查,得到如下數(shù)據(jù):
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
貸款(億元) | 50 | 60 | 70 | 80 | 100 |
(1)將上表進(jìn)行如下處理:,
得到數(shù)據(jù):
1 | 2 | 3 | 4 | 5 | |
0 | 1 | 2 | 3 | 5 |
試求與的線性回歸方程,再寫出與的線性回歸方程.
(2)利用(1)中所求的線性回歸方程估算2019年房貸發(fā)放數(shù)額.
參考公式:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的參數(shù)方程為,其中為參數(shù),且在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線的極坐標(biāo)方程;
(2)設(shè)是曲線上的一點(diǎn),直線被曲線截得的弦長為,求點(diǎn)的極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在實(shí)數(shù)集上的奇函數(shù),且當(dāng)時(shí), .
(Ⅰ)求函數(shù)在上的解析式;
(Ⅱ)判斷在上的單調(diào)性;
(Ⅲ)當(dāng)取何值時(shí),方程在上有實(shí)數(shù)解?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),(其中,,)的圖象與軸的交點(diǎn)中,相鄰兩個(gè)交點(diǎn)之間的距離為,且圖象上一個(gè)最高點(diǎn)為.
(1)求的解析式;
(2)先把函數(shù)的圖象向左平移個(gè)單位長度,然后再把所得圖象上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到函數(shù)的圖象,試寫出函數(shù)的解析式.
(3)在(2)的條件下,若存在,使得不等式成立,求實(shí)數(shù)的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com