14.已知f(x)=xlnx+mx,且曲線y=f(x)在點(1,f(1))處的切線斜率為1.
(1)求實數(shù)m的值;
(2)設(shè)g(x)=f(x)-$\frac{a}{2}$x2-x+a(a∈R)在其定義域內(nèi)有兩個不同的極值點x1,x2,且x1<x2,已知λ>0,若不等式e1+λ<x1•x2λ恒成立,求λ的范圍.

分析 (1)求出原函數(shù)的導(dǎo)函數(shù),得到f′(1),由f′(1)=1求得m值;
(2)求出g(x),求其導(dǎo)函數(shù),可得lnx1=ax1,lnx2=ax2,不等式e1+λ<x1•x2λ恒成立,轉(zhuǎn)化為$\frac{ln\frac{{x}_{1}}{{x}_{2}}}{{x}_{1}-{x}_{2}}>\frac{1+λ}{{x}_{1}+λ{x}_{2}}$恒成立,進一步轉(zhuǎn)化為$ln\frac{{x}_{1}}{{x}_{2}}<\frac{(1+λ)({x}_{1}-{x}_{2})}{{x}_{1}+λ{x}_{2}}$恒成立.令$t=\frac{{x}_{1}}{{x}_{2}}$,t∈(0,1),則不等式$lnt<\frac{(1+λ)(t-1)}{t+λ}$在t∈(0,1)上恒成立.令$h(t)=lnt-\frac{(1+λ)(t-1)}{t+λ}$,求導(dǎo)可得滿足條件的λ的范圍.

解答 解:(1)f′(x)=1+lnx+m,
由題意知,f′(1)=1,即:m+1=1,解得 m=0;
(2)∵e1+λ<x1•x2λ 等價于1+λ<lnx1+λlnx2
g(x)=f(x)-$\frac{a}{2}$x2-x+a=xlnx-$\frac{a}{2}$x2-x+a,
由題意可知x1,x2 分別是方程g′(x)=0,即:lnx-ax=0的兩個根,
即lnx1=ax1,lnx2=ax2
∴原式等價于1+λ<ax1+λax2=a(x1+λx2),
∵λ>0,0<x1<x2,∴原式等價于$a>\frac{1+λ}{{x}_{1}+λ{x}_{2}}$.
又由lnx1=ax1,lnx2=ax2
作差得,$ln\frac{{x}_{1}}{{x}_{2}}=a({x}_{1}-{x}_{2})$,即$a=\frac{ln\frac{{x}_{1}}{{x}_{2}}}{{x}_{1}-{x}_{2}}$.
∴原式等價于$\frac{ln\frac{{x}_{1}}{{x}_{2}}}{{x}_{1}-{x}_{2}}>\frac{1+λ}{{x}_{1}+λ{x}_{2}}$,
∵0<x1<x2,原式恒成立,即$ln\frac{{x}_{1}}{{x}_{2}}<\frac{(1+λ)({x}_{1}-{x}_{2})}{{x}_{1}+λ{x}_{2}}$恒成立.
令$t=\frac{{x}_{1}}{{x}_{2}}$,t∈(0,1),
則不等式$lnt<\frac{(1+λ)(t-1)}{t+λ}$在t∈(0,1)上恒成立.
令$h(t)=lnt-\frac{(1+λ)(t-1)}{t+λ}$,又h′(t)=$\frac{1}{t}-\frac{(1+λ)^{2}}{(t+λ)^{2}}=\frac{(t-1)(t-{λ}^{2})}{t(t+λ)^{2}}$,
當(dāng)λ2≥1時,可得t∈(0,1)時,h′(t)>0,
∴h(t)在t∈(0,1)上單調(diào)增,又h(1)=0,
h(t)<0在t∈(0,1)恒成立,符合題意.
當(dāng)λ2<1時,可得t∈(0,λ2)時,h′(t)>0,t∈(λ2,1)時,h′(t)<0,
∴h(t)在t∈(0,λ2)時單調(diào)增,在t∈(λ2,1)時單調(diào)減,又h(1)=0,
∴h(t)在t∈(0,1)上不能恒小于0,不符合題意,舍去.
綜上所述,若不等式e1+λ<x1•x2λ 恒成立,只須λ2≥1,
又λ>0,∴λ≥1.

點評 本題考查利用導(dǎo)數(shù)研究過曲線上某點處的切線方程,考查利用導(dǎo)數(shù)求函數(shù)的極值,考查數(shù)學(xué)轉(zhuǎn)化思想方法,訓(xùn)練了學(xué)生的靈活變形能力和應(yīng)用求解能力,屬壓軸題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知等比數(shù)列{an}滿足a2•a4=a1,且a2與2a5的等差中項為5,Sn為其的前n項和,則S5等于31.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,已知F是拋物線x2=2py(p>0)的焦點,O為坐標(biāo)原點,過點O、F的圓的圓心為Q,點Q到拋物線準(zhǔn)線的距離為$\frac{3}{2}$.過點F的直線l交拋物線于A,B兩點,過A,B分別作拋物線的切線,兩切線交點為M.
(1)求拋物線的方程;
(2)求$\overrightarrow{MF}$•$\overrightarrow{MB}$-$\overrightarrow{MF}$•$\overrightarrow{MA}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若實數(shù)x,y滿足不等式組$\left\{{\begin{array}{l}{x-y+2≥0}\\{x+2y-4≥0}\\{2x-y-8≤0}\end{array}}$,則z=y-x最小值是-4.z=$\frac{x+2y+3}{x+1}$的最大值是7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)y=4cos(2016x)-e|2016x|(e為自然對數(shù)的底數(shù))的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知f(x)=$\left\{\begin{array}{l}{log_2}(x+1),x>2\\ f(x+1),x≤2\end{array}$,執(zhí)行如圖所示的程序框圖,若輸入A的值為f(1),則輸出的P值為(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖一是某校學(xué)生身高的條形統(tǒng)計圖,從左到右表示學(xué)生人數(shù)依次記為A1、A2、…、A10(如A2表示身高在[150,155)內(nèi)的人數(shù)).圖二是統(tǒng)計圖一中身高在一定范圍內(nèi)學(xué)生人數(shù)的一個算法流程圖.現(xiàn)要統(tǒng)計身高在[160,175)內(nèi)的學(xué)生人數(shù),那么在流程圖中的判斷框內(nèi)應(yīng)填寫的條件及輸出的S值分別是(  )
A.i<6?,1000B.i<7?,1500C.i<8?,1850D.i<9?,2050

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.函數(shù)f(x)=2-|x-1|的值域為(0,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年江蘇泰興中學(xué)高二上學(xué)期期末數(shù)學(xué)(理)試卷(解析版) 題型:填空題

過點作直線交橢圓兩點,若點恰為線段的中點,則直線的方程為

查看答案和解析>>

同步練習(xí)冊答案