討論y=ax+b(a≠0)的單調性.
考點:函數(shù)單調性的判斷與證明
專題:函數(shù)的性質及應用
分析:根據(jù)一次函數(shù)y=ax+b(a≠0)的圖象,對a進行分類討論,再分別判斷出函數(shù)y的單調性.
解答: 解:根據(jù)一次函數(shù)y=ax+b(a≠0)的圖象知,
當a>0時,一次函數(shù)y=ax+b在R上單調遞增;
當a<0時,一次函數(shù)y=ax+b在R上單調遞減.
點評:本題考查了一次函數(shù)的圖象和單調性,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

tan(α+
π
3
)-tanα-
3
tanαtan(α+
π
3
)的值為( 。
A、
3
B、-
3
C、
3
3
D、-
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某機構調查了當?shù)?000名居民的月收入,并根據(jù)所得數(shù)據(jù)畫出樣本的頻率分布直方圖,請根據(jù)如圖的信息,估計該地居民月收入的中位數(shù)是( 。
A、2100B、2200
C、2300D、2400

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x|x-m|+2x-3.
(1)當m=4時,求函數(shù)y=f(x)(x∈R)的單調區(qū)間;
(2)當m=4,并且2≤x≤5時,t≤f(x)≤2t+8恒成立,求t的范圍
(3)求m的取值范圍,使得函數(shù)y=f(x)在R上恒為增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>0,函數(shù)f(x)=x|x-a|+1(x∈R).
(Ⅰ)當a=1時,求所有使f(x)=x成立的x的值;
(Ⅱ)當a=1時,求函數(shù)y=f(x)在閉區(qū)間[0,2]上的最大值和最小值;
(Ⅲ)試討論函數(shù)y=f(x)的圖象與直線y=a的交點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)f(x)=
x2+12x+37
+
x2-4x+13
的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=-x2-2x+3,當自變量x在下列取值范圍內時,分別求函數(shù)的最大值或最小值,并求當函數(shù)取最大(。┲禃r所對應的自變量x的值.
(1)0≤x≤3;         
(2)-2≤x≤1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x,y滿足直線l:x+2y=6.
(1)求原點O關于直線l的對稱點P的坐標;
(2)當x∈(1,3]時,求k=
y-1
x-1
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列1,1+
1
2
,1+
1
2
+
1
22
,…,1+
1
2
+
1
22
+…+
1
2n-1
,…的前n項和為Sn,則
lim
n→∞
(Sn-2n)的值為( 。
A、2B、0C、1D、-2

查看答案和解析>>

同步練習冊答案