12.已知遞增等差數(shù)列{an}滿足a1•a4=7,a2+a3=8.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求數(shù)列{bn}的前n項(xiàng)和為Sn

分析 (1)將已知條件轉(zhuǎn)化為用等差數(shù)列的首項(xiàng)和公比表示,通過解方程組可求得基本量,從而求得通項(xiàng)公式;
(2)將數(shù)列{an}的通項(xiàng)公式代入${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$得${b_n}=\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),采用“裂項(xiàng)相消法”即可求得數(shù)列{bn}的前n項(xiàng)和為Sn

解答 解:(1)由已知由等差數(shù)列性質(zhì)可知:a2+a3=a1+a4,
∴$\left\{\begin{array}{l}{a_1}+{a_4}=8\\{a_1}{a_4}=7\\{a_1}<{a_4}\end{array}\right.$,
解得:a1=1,a4=7
∴d=$\frac{{a}_{4}-{a}_{1}}{4-1}$=2,
∴an=1+2(n-1)=2n-1,
數(shù)列{an}的通項(xiàng)公式an=2n-1;
(2)由${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,可知${b_n}=\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
∴${S_n}=\frac{1}{2}(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+…+\frac{1}{2n-1}-\frac{1}{2n+1})=\frac{1}{2}(1-\frac{1}{2n+1})$,
${S_n}=\frac{1}{2}(1-\frac{1}{2n+1})$.

點(diǎn)評 本題考查等差數(shù)列的性質(zhì),等差數(shù)列通項(xiàng)公式,“裂項(xiàng)相消法”求數(shù)列的前n項(xiàng)和公式,考查計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)滿足:f(x)=2f(2x-1)-3x2+2,則曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為y=2x-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=ex,g(x)=ax+b(a,b∈R).
(1)設(shè)h(x)=xg(x)+1.
①若a≠0,則a,b滿足什么條件時(shí),曲線y=f(x)與y=h(x)在x=0處總有相同的切線?
②當(dāng)a=1時(shí),求函數(shù)F(x)=$\frac{h(x)}{f(x)}$單調(diào)區(qū)間;
(2)若集合{x|f(x)<g(x)}為空集,求ab的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.(1)已知函數(shù)f(x)=$\frac{1+lnx}{x}$,當(dāng)x≥1時(shí),不等式f(x)≥$\frac{k}{x+1}$恒成立,求實(shí)數(shù)k的取值范圍;
(2)已知不等式f(x)=ln(x+1)-ax+ex.如果對任意x≥0,f(x)≥1恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{x}{{x}^{2}+1}$.
(1)判斷x的奇偶性,并證明;
(2)證明函數(shù)f(x)在(1,+∞)為減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知實(shí)數(shù)m∈[0,1],n∈[0,2],則關(guān)于x的一元二次方程4x2+4mx-n2+2n=0有實(shí)數(shù)根的概率是(  )
A.1-$\frac{π}{4}$B.$\frac{π}{4}$C.$\frac{π-3}{2}$D.$\frac{π}{2}$-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)直線l過點(diǎn)(-3,0),且與圓x2+y2=1相切,則l的斜率是( 。
A.±$\frac{1}{4}$B.±$\frac{{\sqrt{2}}}{4}$C.±$\frac{1}{3}$D.±$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)函數(shù)f(x)=ex+ax+b在點(diǎn)(0,f(0))處的切線方程為x+y+1=0.
(1)求a,b值,并求f(x)的單調(diào)區(qū)間;
(2)證明:當(dāng)x≥0時(shí),f(x)>x2-9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=4x3+2mx2+(m-$\frac{2}{3}$)x+n(m,n∈R)在R上有兩個(gè)極值點(diǎn),則m的取值范圍為( 。
A.(-1,1)B.(1,2)C.(-∞,1)U(2,+∞)D.(-∞,1)U(1,+∞)

查看答案和解析>>

同步練習(xí)冊答案