7.已知函數(shù)f(x)是定義在R上的偶函數(shù),當x≥0時,f(x)=x2-2x-1.
(1)求f(x)的函數(shù)解析式;
(2)作出函數(shù)f(x)的簡圖,寫出函數(shù)f(x)的單調(diào)減區(qū)間及最值.
(3)若關(guān)于x的方程f(x)=m有兩個解,試說出實數(shù)m的取值范圍.(只要寫出結(jié)果,不用給出證明過程)
分析 (1)當x<0時,-x>0,由已知中當x≥0時,f(x)=x2-2x-1,及函數(shù)f(x)是定義在R上的偶函數(shù),可求出當x<0時函數(shù)的解析式,進而得到答案,
(2)由二次函數(shù)的圖象畫法可得到函數(shù)的草圖;根據(jù)圖象下降對應函數(shù)的單調(diào)遞減區(qū)間,分析出函數(shù)值的取值范圍后可得到答案;
(3)由圖象可得結(jié)論.
解答 解:(1)當x<0時,-x>0,f(-x)=x2+2x-1.
∵f(x)是定義在R上的偶函數(shù),∴f(-x)=f(x)
∴f(x)=x2+2x-1--------------------------------------(2分)
∴f(x)=$\left\{\begin{array}{l}{{x}^{2}-2x-1,x≥0}\\{{x}^{2}+2x-1,x<0}\end{array}\right.$--------------------------------3分
(2)函數(shù)圖象如圖所示
-----------------------------------------------------------------------------------------(5分)
單調(diào)減區(qū)間為(-∞,-1],[0,1]------------------------------------(6分)
f(x)min=-2,函數(shù)沒有最大值(注:不說明最大值情況扣1分)--(8分)
(3)m∈{-2}∪(-1,+∞)----------------------------------------------------------(10分)
點評 本題考查的知識點是函數(shù)圖象,函數(shù)的單調(diào)區(qū)間,函數(shù)的值域,是函數(shù)圖象和性質(zhì)的綜合應用,難度中檔.