【題目】下面四個說法(其中AB表示點,a表示直線,α表示平面):

①∵AαBα,∴ABα;

②∵Aα,Bα,∴ABα

③∵Aa,aα,∴Aα;

④∵Aaaα,∴Aα.

其中表述方式和推理都正確的命題的序號是 (  )

A. ①④ B. ②③ C. D.

【答案】C

【解析】①錯,應(yīng)寫為Aα,Bα;②錯,應(yīng)寫為ABα;③錯,推理錯誤,有可能Aα;④推理與表述都正確.選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足是數(shù)列的前項的和

1若數(shù)列為等差數(shù)列

求數(shù)列的通項;

若數(shù)列滿足,數(shù)列滿足,試比較數(shù)列項和項和的大。

2若對任意恒成立,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】提高過江大橋的車輛通行能力可改善整個城市的交通狀況.在一般情況下,大橋上的車流速度v單位:千米/小時是車流密度x單位:輛/千米的函數(shù),當(dāng)橋上的車流密度達(dá)到200輛/千米時,造成堵塞,此時車流速度為0;當(dāng)車流密度不超過20輛/千米時,車流速度為60千米/小時,研究表明:當(dāng)20≤x≤200時,車流速度v是車流密度x的一次函數(shù).

1當(dāng)0≤x≤200時,求函數(shù)vx的表達(dá)式;

2當(dāng)車流密度x為多大時,車流量單位時間內(nèi)通過橋上某測觀點的車輛數(shù),單位:輛/小時fxx·vx可以達(dá)到最大,并求出最大值.(精確到1輛/小時

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,上頂點與兩焦點構(gòu)成的三角形為正三角形

1求橢圓的離心率;

2過點的直線與橢圓交于兩點,若的內(nèi)切圓的面積的最大值為,求橢圓的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從一箱產(chǎn)品中隨機地抽取一件,設(shè)事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1.則事件抽到的是二等品或三等品的概率為(  )

A. 0.7 B. 0.65

C. 0.35 D. 0.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在空間中,下列命題錯誤的是 (  )

A. 一條直線與兩個平行平面中的一個相交則必與另一個相交

B. 一個平面與兩個平行平面相交,交線平行

C. 平行于同一平面的兩個平面平行

D. 平行于同一直線的兩個平面平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱ABCA1B1C1的底面是邊長為2的正三角形,E,F(xiàn)分別是BC,CC1的中點.

(Ⅰ)證明:平面AEF⊥平面B1BCC1;

(Ⅱ)若直線A1C與平面A1ABB1所成的角為45°,求三棱錐FAEC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校某研究性學(xué)習(xí)小組在對學(xué)生上課注意力集中情況的調(diào)查研究中,發(fā)現(xiàn)其在40分鐘的一節(jié)課中,注意力指數(shù)與聽課時間(單位:分鐘)之間的關(guān)系滿足如圖所示的圖象,當(dāng)時,圖象是二次函數(shù)圖象的一部分,其中頂點,過點;當(dāng)時,圖象是線段,其中.根據(jù)專家研究,當(dāng)注意力指數(shù)大于62時,學(xué)習(xí)效果最佳.

1)試求的函數(shù)關(guān)系式;

2)教師在什么時段內(nèi)安排內(nèi)核心內(nèi)容,能使得學(xué)生學(xué)習(xí)效果最佳?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)()是偶函數(shù).

(1)求k的值;

(2)若函數(shù)的圖象與直線沒有交點,求的取值范圍;

(3)若函數(shù),,是否存在實數(shù)使得最小值為,若存在,求出的值; 若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案