15.如圖,拋物線y2=2px(p>0)的焦點為F,準(zhǔn)線為l,過拋物線上一點A作l的垂線,垂足為B,設(shè)C($\frac{7}{2}$p,0),AF與BC相交于點E.若|CF|=3|AF|,且△ACE的面積為3,則p的值為2$\sqrt{2}$.

分析 如圖所示,F(xiàn)($\frac{p}{2}$,0),|由于AB∥x軸,|CF|=3|AF|,|AB|=|AF|,可得|CF|=3|AB|=3p,|CE|=3|BE|.利用拋物線的定義可得xA,代入可取yA,再利用S△ACE=3,即可得出.

解答 解:如圖所示,F($\frac{p}{2}$,0),|CF|=3p.
∵AB∥x軸,|CF|=3|AF|,|AB|=|AF|,
∴|CF|=3|AB|=3p,|CE|=3|BE|.
∴xA+$\frac{p}{2}$=p,解得xA=$\frac{p}{2}$,
代入可取yA=p,
∴S△ACE=$\frac{3}{4}$S△ABC=$\frac{3}{4}×\frac{1}{2}×p×p$=3
解得p=2$\sqrt{2}$.
故答案為2$\sqrt{2}$.

點評 本題考查了拋物線的定義及其性質(zhì)、平行線的性質(zhì)、三角形面積計算公式,考查了推理能力與計算能力,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.頂點在x軸上,兩頂點間的距離為8,離心率e=$\frac{5}{4}$的雙曲線為( 。
A.$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{16}$=1B.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{25}$=1C.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1D.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0的左、右焦點分別為F1、F2,以F1F2為直徑的圓被直線$\frac{x}{a}$+$\frac{y}$=1截得的弦長為$\sqrt{6}$a,則雙曲線的離心率為$\sqrt{2}$:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.橢圓$\frac{x^2}{16}$+$\frac{y^2}{12}$=1的左頂點到右焦點的距離為( 。
A.2B.3C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.平行四邊形ABCD的頂點A為雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的中心,頂點B為雙曲線的右焦點,頂點C在y軸正半軸上,頂點D恰好在該雙曲線左支上,若∠ABC=45°,則此雙曲線的離心率是( 。
A.$\sqrt{5}$B.$\frac{{\sqrt{5}+3}}{2}$C.$\frac{{\sqrt{5}+1}}{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)是定義R上的偶函數(shù),且以2為周期,則“f(x)為[0,1]上的增函數(shù)”是“f(x)為[3,4]上的減函數(shù)”(  )
A.既不充分也不必要條件B.充分非必要條件
C.必要非充分條件D.充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知AC,BD為圓O:x2+y2=9的兩條相互垂直的弦,垂足為M(1,$\sqrt{2}$),則四邊形ABCD的面積的最大值為15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=ax2-4x+2,函數(shù)g(x)=($\frac{1}{3}$)f(x)
(Ⅰ)若y=f(x)的對稱軸是x=2,求f(x)的解析式;
(Ⅱ)在(Ⅰ)的條件下求出g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)α為平面,a、b為兩條不同的直線,則下列敘述正確的是( 。
A.若a∥α,b∥α,則a∥bB.若a⊥α,a∥b,則b⊥α
C.若α∥β,a?α,b?β則a∥bD.若a∥α,a⊥b,則b⊥α

查看答案和解析>>

同步練習(xí)冊答案