20.已知函數(shù)f(x)是定義R上的偶函數(shù),且以2為周期,則“f(x)為[0,1]上的增函數(shù)”是“f(x)為[3,4]上的減函數(shù)”( 。
A.既不充分也不必要條件B.充分非必要條件
C.必要非充分條件D.充要條件

分析 由題意,可由函數(shù)的性質(zhì)得出f(x)為[-1,0]上是減函數(shù),再由函數(shù)的周期性即可得出f(x)為[3,4]上的減函數(shù),由此證明充分性,再由f(x)為[3,4]上的減函數(shù)結(jié)合周期性即可得出f(x)為[-1,0]上是減函數(shù),再由函數(shù)是偶函數(shù)即可得出f(x)為[0,1]上的增函數(shù),由此證明必要性,即可得出正確選項

解答 解:∵f(x)是定義在R上的偶函數(shù),
∴若f(x)為[0,1]上的增函數(shù),則f(x)為[-1,0]上是減函數(shù),
又∵f(x)是定義在R上的以2為周期的函數(shù),且[3,4]與[-1,0]相差兩個周期,
∴兩區(qū)間上的單調(diào)性一致,所以可以得出f(x)為[3,4]上的減函數(shù),故充分性成立.
若f(x)為[3,4]上的減函數(shù),同樣由函數(shù)周期性可得出f(x)為[-1,0]上是減函數(shù),再由函數(shù)是偶函數(shù)可得出f(x)為[0,1]上的增函數(shù),故必要性成立.
綜上,“f(x)為[0,1]上的增函數(shù)”是“f(x)為[3,4]上的減函數(shù)”的充要條件.
故選D.

點評 本題考查充分性與必要性的判斷,解題的關(guān)鍵是理解充分性與必要性證明的方向,即由哪個條件到哪個條件的證明是充分性,哪個方向是必要性,初學(xué)者易搞不清證明的方向?qū)е卤硎錾铣霈F(xiàn)邏輯錯誤.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.某幾何體的三視圖如圖所示,則該幾何體的體積為$\frac{40}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.求值:2log2$\frac{1}{4}$+lg$\frac{1}{100}$+(${\sqrt{2}$-1)lg1=-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.中心在原點的橢圓長軸右頂點為(2,0),直線y=x-1與橢圓相交于M,N兩點,MN中點的橫坐標為$\frac{2}{3}$,則此橢圓標準方程是(  )
A.$\frac{x^2}{2}+\frac{y^2}{4}=1$B.$\frac{x^2}{4}+\frac{y^2}{3}=1$C.$\frac{x^2}{3}+\frac{y^2}{2}=1$D.$\frac{x^2}{4}+\frac{y^2}{2}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.如圖,拋物線y2=2px(p>0)的焦點為F,準線為l,過拋物線上一點A作l的垂線,垂足為B,設(shè)C($\frac{7}{2}$p,0),AF與BC相交于點E.若|CF|=3|AF|,且△ACE的面積為3,則p的值為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.空間四邊形ABCD的對角線AC=10,BD=6,M、N分別為AB、CD的中點,MN=7,則異面直線AC和BD所成的角等于( 。
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知有序?qū)崝?shù)對(x,y)滿足條件x≤y≤$\sqrt{1-{x}^{2}}$,則x+y的取值范圍是(  )
A.[-2,$\sqrt{2}$]B.[-$\sqrt{2}$,$\sqrt{2}$]C.[-1,$\sqrt{2}$]D.(-∞,$\sqrt{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.給出定義:若 m-$\frac{1}{2}$<x≤m+$\frac{1}{2}$(其中m為整數(shù)),則m叫做離實數(shù)x最近的整數(shù),記作{x},即{x}=m.在此基礎(chǔ)上給出下列關(guān)于函數(shù)f(x)=x-{x}的四個命題:
①函數(shù)y=f(x)的定義域是R,值域是(-$\frac{1}{2}$,$\frac{1}{2}$]
②函數(shù)y=f(x)的圖象關(guān)于y軸對稱;
③數(shù)y=f(x)的圖象關(guān)于坐標原點對稱;
④函數(shù)y=f(x)在(-$\frac{1}{2}$,$\frac{1}{2}$]上是增函數(shù);
則其中正確命題是①④(填序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知數(shù)列{an}是公差不為零的等差數(shù)列,Sn為其前n項和,且a2=3,又a4、a5、a8成等比數(shù)列,則an=-2n+7,使Sn最大的序號n的值3.

查看答案和解析>>

同步練習冊答案