A. | $\sqrt{5}$ | B. | $\sqrt{10}$ | C. | $\sqrt{15}$ | D. | 4 |
分析 利用兩個雙曲線漸近線相同設(shè)出雙曲線的方程,利用待定系數(shù)法進(jìn)行求解即可得到結(jié)論.
解答 解:∵雙曲線H1與雙曲線H2:$\frac{x^2}{20}$-$\frac{y^2}{5}$=1具有相同的漸近線,
∴設(shè)雙曲線H1的方程為$\frac{x^2}{20}$-$\frac{y^2}{5}$=λ,(λ≠0),
∵點(diǎn)(2$\sqrt{15}$,$\sqrt{5}$)在H1上,
∴λ=$\frac{60}{20}-\frac{5}{5}$=3-1=2,
即雙曲線H1的方程為$\frac{x^2}{20}$-$\frac{y^2}{5}$=2,即$\frac{{x}^{2}}{40}$-$\frac{{y}^{2}}{10}$=1,
即a2=40,b2=10,c2=40+10=50,
即a=2$\sqrt{10}$,b=$\sqrt{10}$,c=5$\sqrt{2}$,
則H1的一個焦點(diǎn)為(5$\sqrt{2}$,0),漸近線方程y=±$\frac{\sqrt{10}}{2\sqrt{10}}$x=±$\frac{1}{2}$x,
不妨設(shè)y=$\frac{1}{2}$x,即x-2y=0,
則焦點(diǎn)到漸近線的距離為d=$\frac{5\sqrt{2}}{\sqrt{1+4}}=\frac{5\sqrt{2}}{\sqrt{5}}$=,$\sqrt{10}$
故選:B
點(diǎn)評 本題主要考查雙曲線的性質(zhì)的應(yīng)用,根據(jù)漸近線相同設(shè)出雙曲線的方程,利用待定系數(shù)法進(jìn)行求解是解決本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x-y+1=0 | B. | x+y+1=0 | C. | x+y-1=0 | D. | x-y-1=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=3sin2x | B. | y=3sin$\frac{1}{2}$x | C. | $y=\frac{1}{3}sin2x$ | D. | $y=\frac{1}{3}sin\frac{1}{2}x$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
物體重量(單位g) | 1 | 2 | 3 | 4 | 5 |
彈簧長度(單位cm) | 1.5 | 3 | 4 | 5 | 6.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com