12.雙曲線H1與雙曲線H2:$\frac{x^2}{20}$-$\frac{y^2}{5}$=1具有相同的漸近線,且點(diǎn)(2$\sqrt{15}$,$\sqrt{5}$)在H1上,則H1的焦點(diǎn)到漸近線的距離為(  )
A.$\sqrt{5}$B.$\sqrt{10}$C.$\sqrt{15}$D.4

分析 利用兩個雙曲線漸近線相同設(shè)出雙曲線的方程,利用待定系數(shù)法進(jìn)行求解即可得到結(jié)論.

解答 解:∵雙曲線H1與雙曲線H2:$\frac{x^2}{20}$-$\frac{y^2}{5}$=1具有相同的漸近線,
∴設(shè)雙曲線H1的方程為$\frac{x^2}{20}$-$\frac{y^2}{5}$=λ,(λ≠0),
∵點(diǎn)(2$\sqrt{15}$,$\sqrt{5}$)在H1上,
∴λ=$\frac{60}{20}-\frac{5}{5}$=3-1=2,
即雙曲線H1的方程為$\frac{x^2}{20}$-$\frac{y^2}{5}$=2,即$\frac{{x}^{2}}{40}$-$\frac{{y}^{2}}{10}$=1,
即a2=40,b2=10,c2=40+10=50,
即a=2$\sqrt{10}$,b=$\sqrt{10}$,c=5$\sqrt{2}$,
則H1的一個焦點(diǎn)為(5$\sqrt{2}$,0),漸近線方程y=±$\frac{\sqrt{10}}{2\sqrt{10}}$x=±$\frac{1}{2}$x,
不妨設(shè)y=$\frac{1}{2}$x,即x-2y=0,
則焦點(diǎn)到漸近線的距離為d=$\frac{5\sqrt{2}}{\sqrt{1+4}}=\frac{5\sqrt{2}}{\sqrt{5}}$=,$\sqrt{10}$
故選:B

點(diǎn)評 本題主要考查雙曲線的性質(zhì)的應(yīng)用,根據(jù)漸近線相同設(shè)出雙曲線的方程,利用待定系數(shù)法進(jìn)行求解是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=ax2+bx,a,b∈R.
(1)若f(1)=2且f(x)>0的解集為(m,m+2)(m為實(shí)數(shù)),求f(x)解析式;
(2)若1≤f(-1)≤2,2≤f(1)≤4,求f(-2)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的焦距為2c,右頂點(diǎn)為A,拋物線x2=2py(p>0)的焦點(diǎn)為F,若雙曲線截拋物線的準(zhǔn)線所得線段長為2c,且|FA|=c,求雙曲線的漸近線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.曲線y=2x-ln x在點(diǎn)(1,2)處的切線方程為( 。
A.x-y+1=0B.x+y+1=0C.x+y-1=0D.x-y-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的實(shí)軸長為2$\sqrt{3}$,一個焦點(diǎn)的坐標(biāo)為$(-\sqrt{5},0)$.
(1)求雙曲線的方程;
(2)若斜率為2的直線l交雙曲線C交于A,B兩點(diǎn),且|AB|=4,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)平面上的伸縮變換的坐標(biāo)表達(dá)式為$\left\{\begin{array}{l}x'=\frac{1}{2}x\\ y'=3y\end{array}\right.$,則在這一坐標(biāo)變換下正弦曲線y=sinx的方程變換為( 。
A.y=3sin2xB.y=3sin$\frac{1}{2}$xC.$y=\frac{1}{3}sin2x$D.$y=\frac{1}{3}sin\frac{1}{2}x$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.有4名男生,5名女生,全體排成一行.
(1)其中甲不在中間也不在兩端,有多少種排法?
(2)男女生相間,有多少種排法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在物理實(shí)驗(yàn)中,為了研究所掛物體的重量x對彈簧長度y的影響.某學(xué)生通過實(shí)驗(yàn)測量得到物體的重量與彈簧長度的對比表:
物體重量(單位g)12345
彈簧長度(單位cm)1.53456.5
(1)畫出散點(diǎn)圖;
(2)利用所給的參考公式,求y對x的回歸直線方程;
(3)預(yù)測所掛物體重量為8g時的彈簧長度.
參考公式:
1.樣本數(shù)據(jù)x1,x2,…xn的標(biāo)準(zhǔn)差
s=$\sqrt{\frac{1}{n}[({{x}_{1}-\overline{x})}^{2}+({x}_{2}-\overline{x})^{2}+…+({x}_{n}-\overline{x})^{2}]}$,其中$\overline{x}$為樣本的平均數(shù);
2.線性回歸方程系數(shù)公式$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若點(diǎn)O和點(diǎn)F2(-$\sqrt{2}$,0)分別為雙曲線$\frac{x^2}{a^2}-{y^2}$=1(a>0)的中心和左焦點(diǎn),點(diǎn)P為雙曲線右支上的任意一點(diǎn),則$\frac{{{{|{P{F_2}}|}^2}}}{{{{|{OP}|}^2}+1}}$的取值范圍為(1,$\frac{3}{2}$+$\sqrt{2}$].

查看答案和解析>>

同步練習(xí)冊答案