3.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的焦距為2c,右頂點(diǎn)為A,拋物線x2=2py(p>0)的焦點(diǎn)為F,若雙曲線截拋物線的準(zhǔn)線所得線段長(zhǎng)為2c,且|FA|=c,求雙曲線的漸近線方程.

分析 根據(jù)雙曲線和拋物線 的線段的長(zhǎng)度以及|FA|=c建立方程關(guān)系,求出a=b,進(jìn)行求解即可.

解答 解:由已知|OA|=a,|AF|=c,
所以,$|OF|=b=\frac{p}{2}$
把y=-$\frac{p}{2}$=b代入雙曲線方程$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1得,x2=2a2
所以,直線y=-$\frac{p}{2}$被雙曲線截得的線段長(zhǎng)為2$\sqrt{2}a$,
從而2$\sqrt{2}$a=2c,c=$\sqrt{2}$a,
所以,a2+b2=2a2,
則a=b
所求漸近線方程為y=±x.
考點(diǎn):雙曲線漸近線

點(diǎn)評(píng) 本題主要考查雙曲線的漸近線的求解,解集雙曲線有關(guān)綜合問題的方法(1)解決雙曲線與橢圓、圓、拋物線的綜合問題時(shí),要充分利用橢圓、圓、拋物線的幾何性質(zhì)得出變量間的關(guān)系,再結(jié)合雙曲線的幾何性質(zhì)求解.(2)解決直線與雙曲線的綜合問題,通常是聯(lián)立直線方程與雙曲線方程,消元求解一元二次方程即可,但一定要注意數(shù)形結(jié)合,結(jié)合圖形注意取舍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè){an}是一個(gè)公差為2的等差數(shù)列,且$\frac{{a}_{2}}{{a}_{1}}$=$\frac{{a}_{4}}{{a}_{2}}$.
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)數(shù)列{bn}滿足bn=2${\;}^{{a}_{n}}$,求b1•b2…•bn(用含n的式子表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.判斷點(diǎn)M(2,-1),N(-4,0),Q(1,2)是否在函數(shù)y=3x2-2x+1的圖象上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知過點(diǎn)P(1,1)的直線L與雙曲線${x^2}-\frac{y^2}{4}=1$只有一個(gè)公共點(diǎn),則直線L的斜率k=$\frac{5}{2}$或-2或2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知x,y的取值如表:
x2345
y2.23.84.55.5
從散點(diǎn)圖分析,y與x線性相關(guān),且回歸方程為$\widehat{y}$=1.46x+a,則實(shí)數(shù)a的值為-1.11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)=x2+2x+3在[m,0]上的最大值為3,最小值為2,則實(shí)數(shù)m的取值范圍是[-2,-1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)a、b是關(guān)于t的方程t2cosθ-tsinθ=0的兩個(gè)不相等實(shí)根,則過A(a,a2)、B(b,b2)兩點(diǎn)的直線與雙曲線$\frac{x^2}{{{{cos}^2}θ}}$-$\frac{y^2}{{{{sin}^2}θ}}$=1的公共點(diǎn)個(gè)數(shù)是(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.雙曲線H1與雙曲線H2:$\frac{x^2}{20}$-$\frac{y^2}{5}$=1具有相同的漸近線,且點(diǎn)(2$\sqrt{15}$,$\sqrt{5}$)在H1上,則H1的焦點(diǎn)到漸近線的距離為(  )
A.$\sqrt{5}$B.$\sqrt{10}$C.$\sqrt{15}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)復(fù)數(shù)z=(x-1)+(y-$\sqrt{3}$)i,(x,y∈R),若|z|≤2,則y≤$\frac{{\sqrt{3}}}{3}$x的概率為(  )
A.$\frac{1}{3}-\frac{3}{4π}$B.$\frac{1}{3}+\frac{{\sqrt{3}}}{4π}$C.$\frac{1}{2}-\frac{{\sqrt{3}}}{4π}$D.$\frac{1}{3}-\frac{{\sqrt{3}}}{4π}$

查看答案和解析>>

同步練習(xí)冊(cè)答案