11.已知函數(shù)f(x)=x(x-c)2在x=3處有極小值,則c的值是(  )
A.3或9B.9C.3D.6

分析 根據(jù)函數(shù)在x=3處有極小值,得到f′(3)=0,解出關(guān)于c的方程,再驗證是否為極小值即可.

解答 解:∵函數(shù)f(x)=x(x-c)2,
∴f′(x)=3x2-4cx+c2,
又f(x)=x(x-c)2在x=3處有極值,
∴f′(3)=27-12c+c2=0,
解得c=3或9,
又由函數(shù)在x=3處有極小值,故c=3,
c=9時,函數(shù)f(x)=x(x-c)2在x=3處有極大值,
故選:C.

點評 本題考查函數(shù)在某一點取得極值的條件,是中檔題,本題解題的關(guān)鍵是函數(shù)在這一點取得極值,則函數(shù)在這一點點導(dǎo)函數(shù)等于0,注意這個條件的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.有下列五個命題:
①函數(shù)y=4cos2x,x∈[-10π,10π]不是周期函數(shù);
②已知定義域為R的奇函數(shù)f(x),滿足f(x+3)=f(x),當(dāng)x∈(0,$\frac{3}{2}$)時,f(x)=sinπx,則函數(shù)f(x)在區(qū)間[0,6]上的零點個數(shù)是9;
③為了得到函數(shù)y=-cos2x的圖象,可以將函數(shù)y=sin(2x-$\frac{π}{6}$)的圖象向左平移$\frac{π}{6}$;
④已知函數(shù)f(x)=x-sinx,若x1,x2∈[-$\frac{π}{2}$,$\frac{π}{2}}$]且f(x1)+f(x2)>0,則x1+x2>0;
⑤設(shè)曲線f(x)=acosx+bsinx的一條對稱軸為x=$\frac{π}{5}$,則點($\frac{2π}{5}$,0)為曲線y=f($\frac{π}{10}$-x)的一個對稱中心.
其中正確命題的序號是①②④⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.(1)設(shè)x>0,y>0,若$\sqrt{2}$是2x與4y的等比中項,則①x2+2y2的最小值為$\frac{1}{3}$.②$\frac{1}{x}+\frac{1}{y}$的最小值為3+2$\sqrt{2}$.
(2)根據(jù)以上兩個小題的解答,總結(jié)說明含條件等式的求最值問題的解決方法(寫出兩個)
①二次函數(shù)的性質(zhì)②均值不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.某幾何體的三視圖如圖所示(圖中網(wǎng)格的邊長為1個單位),其中俯視圖為扇形,則該幾何體的體積為( 。
A.$\frac{2π}{3}$B.$\frac{4π}{3}$C.$\frac{14π}{3}$D.$\frac{16π}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某化肥廠甲、乙兩個車間包裝肥料,在自動包裝傳送帶上每隔30min抽取一包產(chǎn)品,稱其重量,分別記錄抽查數(shù)據(jù)如下:
甲:102,101,99,98,103,98,99;
乙:110,115,90,85,75,115,110.
(1)這種抽樣方法是哪一種?
(2)將這兩組數(shù)據(jù)用莖葉圖表示;
(3)將兩組數(shù)據(jù)比較,說明哪個車間的產(chǎn)品較穩(wěn)定.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)函數(shù)f(x)=3x+2x-4,函數(shù)g(x)=log2x+2x2-5,若實數(shù)m,n分別是函數(shù)f(x),g(x)的零點,則( 。
A.g(m)<0<f(n)B.f(n)<0<g(m)C.0<g(m)<f(n)D.f(n)<g(m)<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.某程序流程圖如圖所示,依次輸入函數(shù)$f(x)=sin(x-\frac{π}{6})$,$f(x)=\frac{1}{2}sin(2x+\frac{π}{6})$,f(x)=tanx,$f(x)=cos(2x-\frac{π}{6})$,執(zhí)行該程序,輸出的數(shù)值p=$\frac{\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.等比數(shù)列{an}的首項a1>0,公比為q(|q|<1),滿足a2+a3+…+an+…≤$\frac{{a}_{1}}{2}$,則公比q的取值范圍是(-1,0)∪(0,$\frac{1}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)y=f(x)(x∈R)滿足f(x+2)=f(x),且x∈[-1,1]時,f(x)=|x|-1,又g(x)=$\left\{\begin{array}{l}{f(x),x≤1}\\{\frac{lnx}{x},x>1}\end{array}\right.$,若函數(shù)F(x)=g(x)-kx在區(qū)間[-7,+∞)上恰有7個零點,則實數(shù)k的取值范圍為( 。
A.($\frac{1}{6}$,$\frac{1}{4}$)B.($\frac{1}{6}$,$\frac{1}{2e}$)C.($\frac{1}{8}$,$\frac{1}{2e}$)D.($\frac{1}{2e}$,$\frac{1}{2}$)

查看答案和解析>>

同步練習(xí)冊答案