20.等比數(shù)列{an}的首項(xiàng)a1>0,公比為q(|q|<1),滿足a2+a3+…+an+…≤$\frac{{a}_{1}}{2}$,則公比q的取值范圍是(-1,0)∪(0,$\frac{1}{3}$].

分析 對等比數(shù)列的前n項(xiàng)和取極限列不等式解出q即可.

解答 解:∵a2+a3+…+an+…=$\underset{lim}{n→+∞}$Sn-a1=$\underset{lim}{n→+∞}$$\frac{{a}_{1}(1-{q}^{n})}{1-q}$-a1=$\frac{{a}_{1}}{1-q}$-a1,
∴$\frac{{a}_{1}}{1-q}$-a1≤$\frac{{a}_{1}}{2}$,a1>0,
∴$\frac{1}{1-q}$≤$\frac{3}{2}$,又|q|<1
解得-1<q≤$\frac{1}{3}$,又q≠0,
∴q的范圍是(-1,0)∪(0,$\frac{1}{3}$].
故答案為:(-1,0)∪(0,$\frac{1}{3}$].

點(diǎn)評 本題考查了等比數(shù)列的前n項(xiàng)和公式,不等式的解法,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知$sinα=\frac{5}{13},cos(α+β)=\frac{3}{5}$,(α、β為銳角),求cosβ,cos(2α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=x(x-c)2在x=3處有極小值,則c的值是( 。
A.3或9B.9C.3D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知實(shí)數(shù)4、m、16構(gòu)成一個等比數(shù)列,則圓錐曲線$\frac{x^2}{m}+{y^2}=1$的離心率為(  )
A.3B.$\frac{{\sqrt{14}}}{4}$C.$\sqrt{3}$或 $\frac{{\sqrt{14}}}{4}$D.$\frac{{\sqrt{14}}}{4}$或3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)唯一的零點(diǎn)在區(qū)間(1,3)內(nèi),那么下面命題錯誤的是( 。
A.函數(shù)f(x)在(1,2)或[2,3)內(nèi)有零點(diǎn)B.函數(shù)f(x)在(3,5)內(nèi)無零點(diǎn)
C.函數(shù)f(x)在(2,5)內(nèi)有零點(diǎn)D.函數(shù)f(x)在(2,4)內(nèi)不一定有零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(x)=e-2x-ax(a為常數(shù))的圖象與y軸交于點(diǎn)A,曲線y=f(x)在點(diǎn)A處的切線垂直于直線x+2y-1=0,則a的值為-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.(1)計算$\frac{\sqrt{3}sin(-1200°)}{tan\frac{11}{3}π}$-cos585°•tan$(-\frac{37π}{4})$
(2)化簡$\frac{{cos(α-\frac{π}{2})}}{{sin(\frac{5π}{2}+α)}}•sin(α-2π)•cos(2π-α)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知等差數(shù)列{an}中,a1+a3+a5=9,a6=-9,該數(shù)列前n項(xiàng)和最大?最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,圓C:x2-(2+a)x+y2-ay+2a=0.
(Ⅰ)若圓C與x軸相切,求圓C的方程;
(Ⅱ)已知a>2,圓C與x軸相交于兩點(diǎn)M,N(點(diǎn)M在點(diǎn)N的左側(cè)).過點(diǎn)M任作一條直線與圓O:x2+y2=10相交于兩點(diǎn)A,B.問:是否存在實(shí)數(shù)a,使得∠ANM=∠BNM?若存在,求出實(shí)數(shù)a的值,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案