在△ABC中,如果a:b:c=2:
6
:(
3
+1),求這個三角形的最小角.
考點:余弦定理
專題:解三角形
分析:由題意根據(jù)大邊對大角可得a邊對的角A為最小角,再由余弦定理求得cosA 的值,可得最小角A的值.
解答: 解:△ABC中,如果a:b:c=2:
6
:(
3
+1),可設a=2k、b=
6
k、c=(
3
+1)k,
故a邊對的角A為最小角,由余弦定理可得cosA=
b2+c2-a2
2bc
=
2
3
(
3
+1)
2
6
(
3
+1)
=
2
2
,
∴A=
π
4
點評:本題主要考查余弦定理的應用,根據(jù)三角函數(shù)的值求角,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}的前n項和為Sn=2n2-3n,求證:數(shù)列{an}是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=|1-2x|,x∈[0,1],記f1(x)=f(x),且fn+1(x)=f[fn(x)],n∈N*
(1)若函數(shù)y=f(x)-ax僅有2個零點,則實數(shù)a的取值范圍是
 

(2)若函數(shù)y=fn(x)-log2(x+1)的零點個數(shù)為an,則滿足an<2(1+2+…+n)的所有n的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=t2(a-a2)+t+1>0恒成立且t∈(0,2],求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

舉例說明,在同一坐標系內.
(1)y=f(x)與x=f-1(y)的圖象有什么關系?
(2)y=f(x)與y=f-1(x)的圖象有什么關系?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
lnx
x

(1)求f(x)的單調區(qū)間;
(2)若關于x的不等式lnx<mx對一切x∈[a,2a](a>0)都成立,求m范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設命題p:?x∈[-1,1],x+m>0命題q:方程
x2
m-4
-
y2
m+2
=1表示雙曲線.
(1)寫出命題p的否定;
(2)若“p或q”為真,“p且q”為假,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某市物價局調查了治療某種流感的常規(guī)藥品在2012年每個月的批發(fā)價格和該藥品在藥店的銷售價格,調查發(fā)現(xiàn),該藥品的批發(fā)價按月份以12元/盒為中心價隨某一正弦曲線上下波動,且3月份的批發(fā)價格最高為14元/盒,7月份的批發(fā)價格最低為10元/盒.該藥品在藥店的銷售價格按月份以14元/盒為中心價隨另一正弦曲線上下波動,且5月份的銷售價格最高為16元/盒,9月份的銷售價格最低為12元/盒.
(1)求該藥品每盒的批發(fā)價格f(x)和銷售價格g(x)關于月份x的函數(shù)解析式;
(2)假設某藥店每月初都購進這種藥品p盒,且當月售完,求該藥店在2012年哪些月份是盈利的?說明你的理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2x-kxα-2(k,α∈R)的圖象經(jīng)過點(1,0),設g(x)=
f(x),x≤0
log2(x+1),x>0
,若g(t)=2,則實數(shù)t=
 

查看答案和解析>>

同步練習冊答案