8.計算機是將信息轉(zhuǎn)換成二進制進行處理的,二進制即“逢二進一”,如(1 101)2表示二進制數(shù),將它轉(zhuǎn)換成十進制數(shù)是1×23+1×22+0×21+1×20=13,那么將二進制數(shù)($\underset{\underbrace{11…1}}{14個}$01)2轉(zhuǎn)換成十進制數(shù)是( 。
A.216-1B.216-2C.216-3D.216-4

分析 本題的考查點為二進制與十進制數(shù)之間的轉(zhuǎn)換,只要我們根據(jù)二進制轉(zhuǎn)換為十進制方法逐位進行轉(zhuǎn)換,即可得到答案.

解答 解:∵($\underset{\underbrace{11…1}}{14個}$01)2+(11)2=(10000000000000000)=216
又∵(11)2=3,
∴($\underset{\underbrace{11…1}}{14個}$01)2=216-3.
故選:C.

點評 二進制轉(zhuǎn)換為十進制方法:按權(quán)相加法,即將二進制每位上的數(shù)乘以權(quán)(即該數(shù)位上的1表示2的多少次方),然后相加之和即是十進制數(shù).大家在做二進制轉(zhuǎn)換成十進制需要注意的是:(1)要知道二進制每位的權(quán)值;(2)要能求出每位的值,本題屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

18.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知cosB=$\frac{2\sqrt{5}}{5}$,tanC=$\frac{1}{3}$.
(Ⅰ)求tanA;    
(Ⅱ)若c=1,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{{x^2}-1,x<1}\\{-{{log}_2}x,x≥1}\end{array}}$.
(1)在圖中畫出該函數(shù)的圖象;
(2)寫出函數(shù)f(x)的值域、單調(diào)區(qū)間及零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知正四面體ABCD的棱長為2,若動點P從底面△BCD的BC的中點出發(fā),沿著正四面體的側(cè)面運動到D點停止,則動點P經(jīng)過的最短路徑長為( 。
A.3B.$\sqrt{7}$C.2$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知在平面直角坐標系xOy中曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=2cosθ\\ y=\sqrt{3}sinθ.\end{array}\right.$(θ為參數(shù)),直線l的參數(shù)方程為$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t.\end{array}\right.$(t為參數(shù)),曲線C與直線l相交于點A,B,且定點P的坐標為(1,0).
(Ⅰ)求曲線C的普通方程;
(Ⅱ)求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知cosα=-$\frac{3}{5}$,α∈($\frac{π}{2},π})$),sinβ=-$\frac{12}{13}$,β是三象限角,求cos(β-α)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知數(shù)列An:a1,a2,…an(n∈N*,n≥2)滿足a1=an=0,當2≤k≤n(k∈N*)時,(ak-ak-12=1,令S(An)=$\sum_{i=1}^{n}$ai
(1)直接寫出S(A5)的所有可能的值;
(2)求證:S(A2k+1)的最大值為k2,其中k∈N*;
(3)記S(An)的所有可能的值構(gòu)成的集合為Гn,若0∈Гn,求出n(n≥2)的所有取值構(gòu)成的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.下列關系式中正確的是( 。
A.sin11°<sin168°<cos10°B.sin168°<sin11°<cos10°
C.sin11°<cos10°<sin168°D.sin168°<cos10°<sin11°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.一個圓錐的全面積是底面積的4倍,則軸截面的面積是底面積的(  )
A.$\frac{\sqrt{15}}{2π}$倍B.$\frac{\sqrt{15}}{π}$倍C.$\frac{\sqrt{2}}{π}$倍D.$\frac{2\sqrt{2}}{π}$倍

查看答案和解析>>

同步練習冊答案