19.等比數(shù)列{an}中,公比為3,且a2+a4=2,那么a3+a5的值為(  )
A.3B.4C.5D.6

分析 把所求的式子利用等比數(shù)列的通項公式化簡后,將公比和a3+a5的值代入即可求出值.

解答 解:因?yàn)楣萹=3,a2+a4=2,
所以a3+a5=a2q+a4q=q(a2+a4)=3×2=6.
故選:C.

點(diǎn)評 此題考查學(xué)生靈活運(yùn)用等比數(shù)列的通項公式化簡求值,掌握等比數(shù)列的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知冪函數(shù)y=xa,a∈{-2,-1,-$\frac{1}{2}$,$\frac{1}{3}$,$\frac{1}{2}$,1,2,3},其中奇函數(shù)的個數(shù)有( 。
A.2個B.3個C.4個D.5個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.計算下列各式的值:
(1)($\frac{27}{8}$)${\;}^{-\frac{2}{3}}$-($\frac{49}{9}$)${\;}^{\frac{1}{2}}$+(0.2)-2×$\frac{3}{25}$;
(2)$-5{log_9}4+{log_3}\frac{32}{9}-{5^{{{log}_5}3}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)$f(x)=\frac{lnx}{x}-{x^2}+2ex-k$有且只有一個零點(diǎn),則k的值為( 。
A.$e+\frac{1}{e^2}$B.$e+\frac{1}{e}$C.${e^2}+\frac{1}{e^2}$D.${e^2}+\frac{1}{e}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若cotx=2,則$\frac{3sinx-2cosx}{2sinx-3cosx}$=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知直線l的斜率為$-\frac{{\sqrt{3}}}{3}$,則該直線l的傾斜角為( 。
A.30°B.60°C.150°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在平面直角坐標(biāo)系中,不等式組$\left\{\begin{array}{l}x≤2\\|{y-2}|≤x\end{array}\right.$表示的平面區(qū)域的面積是( 。
A.$8\sqrt{2}$B.8C.$4\sqrt{2}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知$|\overrightarrow a|=4,|\overrightarrow b|=3,(2\overrightarrow a-3\overrightarrow b)•(2\overrightarrow a+\overrightarrow b)=61$
(1)求$\overrightarrow a$與$\overrightarrow b$的夾角θ;
(2)若$\vec c=t\vec a+(1-t)\vec b$,且$\vec b•\vec c=0$,求t及$|{\vec c}|$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.將函數(shù)y=sin(2x-$\frac{π}{6}$)的圖象向右平移$\frac{5π}{12}$個單位,得到g(x)的圖象,則g(x)=( 。
A.-sin2xB.sin2xC.-cos2xD.cos2x

查看答案和解析>>

同步練習(xí)冊答案