10.設(shè)△ABC的內(nèi)角A,B,C所對(duì)邊的長分別是a,b,c.且c2=2a2+b2,可導(dǎo)函數(shù)f(x)滿足xf′(x)<2f(x),則( 。
A.sin2A•f(sinB)<sin2B•f(sinA)B.sin2A•f(sinA)>sin2B•f(sinB)
C.cos2B•f(sinA)<sin2A•f(cosB)D.cos2B•f(sinA)>sin2A•f(cosB)

分析 構(gòu)造函數(shù)g(x),求出g(x)的導(dǎo)數(shù),得到函數(shù)的單調(diào)性,從而判斷出答案即可.

解答 解:令g(x)=$\frac{f(x)}{{x}^{2}}$(0<x<1),
則g′(x)=$\frac{xf′(x)-2f(x)}{{x}^{3}}$,
∵0<x<1,f′(x)<2f(x),
∴g′(x)=$\frac{xf′(x)-2f(x)}{{x}^{3}}$<0,
∴g(x)單調(diào)遞減,
∵c2=2a2+b2,
∴cosC=$\frac{{a}^{2}{+b}^{2}{-c}^{2}}{2ab}$=-$\frac{a}{2b}$<0,
∴C是鈍角,∴A+B<$\frac{π}{2}$,
∴0<sinA<sin($\frac{π}{2}$-B)=cosB<1,
∴g(sinA)>g(cosB),
∴$\frac{f(sinA)}{{sin}^{2}A}$>$\frac{f(cosB)}{{cos}^{2}B}$,
∴cos2B•f(sinA)>sin2A•f(cosB),
故選:D.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性問題,考查導(dǎo)數(shù)的應(yīng)用,構(gòu)造函數(shù)g(x)是解題的關(guān)鍵,本題是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1(a>b>0)$的右焦點(diǎn)為F,雙曲線${x}^{2}-\frac{{y}^{2}}{3}=1$的一條漸近線與橢圓C交于A,B兩點(diǎn),且
AF⊥BF,則橢圓C的離心率為$\sqrt{3}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=|2x-1|+|2x+5|,f(x)-m≥0恒成立.
(I)求實(shí)數(shù)m的取值范圍;
(Ⅱ)若m的最大值為n,解不等式|x-3|-2x≤2n-8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某盒子中裝有標(biāo)號(hào)分別為1、2、3、4、5的同質(zhì)小球各2個(gè),現(xiàn)從中一次性取出3個(gè)小球.
(I)求取出的3個(gè)小球上的最小標(biāo)號(hào)為3的概率;
(Ⅱ)設(shè)X表示取出的3個(gè)小球上的最小標(biāo)號(hào),求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,橢圓C與y軸交于A、B兩點(diǎn),|AB|=2.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知點(diǎn)P是橢圓C上的動(dòng)點(diǎn),且直線PA,PB與直線x=4分別交于M、N兩點(diǎn),是否存在點(diǎn)P,使得以MN為直徑的圓經(jīng)過點(diǎn)(2,0)?若存在,求出點(diǎn)P的橫坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知點(diǎn)P是曲線f(x)=x3-x上的點(diǎn),且點(diǎn)P的橫坐標(biāo)是1.
(I)求證:函數(shù)f(x)在[1,+∞)上單調(diào)遞增;
(Ⅱ)求曲線f(x)在點(diǎn)P處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在△ABC中,點(diǎn)D滿足$\overrightarrow{AD}$=$\frac{3}{4}\overrightarrow{AB}$,P為△ABC內(nèi)一點(diǎn),且滿足$\overrightarrow{AP}$=$\frac{3}{10}\overrightarrow{AB}$+$\frac{2}{5}\overrightarrow{AC}$,則$\frac{{S}_{△APD}}{{S}_{△ABC}}$=(  )
A.$\frac{3}{10}$B.$\frac{9}{20}$C.$\frac{6}{35}$D.$\frac{9}{35}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=aex+bxlnx圖象上x=1處的切線方程為y=2ex-e.
(Ⅰ)求實(shí)數(shù)a和b的值;
(Ⅱ)求函數(shù)g(x)=f(x)-ex2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知二次函數(shù)f(x)=ax2+bx+c(a≠0),若關(guān)于x的不等式f(x)>0的解集為{x|x<-2或x>4},則下列結(jié)論正確的是(  )
A.a>0,-$\frac{2a}$=1B.a<0,$\frac{c}{a}$=-8C.a<0,-$\frac{2a}$=-1D.a>0,$\frac{c}{a}$=8

查看答案和解析>>

同步練習(xí)冊(cè)答案