A. | $\frac{1}{2}$ | B. | $\frac{3}{5}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | 0 |
分析 先求圓心到P的距離,再求兩切線夾角一半的三角函數(shù)值,然后求出結(jié)果.
解答 解:圓x2+y2-2x-2y+1=0的圓心為M(1,1),半徑為1,從外一點(diǎn)P(3,2)向這個(gè)圓作兩條切線,
則點(diǎn)P到圓心M的距離等于$\sqrt{5}$,每條切線與PM的夾角的正切值等于$\frac{1}{2}$,
所以兩切線夾角的正切值為tanθ=$\frac{2•\frac{1}{2}}{1-\frac{1}{4}}$=$\frac{4}{3}$,該角的余弦值等于$\frac{3}{5}$,
故選:B.
點(diǎn)評(píng) 本題考查圓的切線方程,兩點(diǎn)間的距離公式,是基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{4}$$-\frac{{y}^{2}}{16}$=1 | B. | x2-$\frac{{y}^{2}}{4}$=1 | C. | $\frac{{x}^{2}}{2}$$-\frac{{y}^{2}}{3}$=1 | D. | x2$-\frac{{y}^{2}}{6}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1260 | B. | 1360 | C. | 1430 | D. | 1530 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com