已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,橢圓上的點(diǎn)到焦點(diǎn)的最小距離為,離心率.
(1)求橢圓的方程;
(2)若直線交于、兩點(diǎn),點(diǎn),問是否存在,使?若存在求出的值,若不存在,請(qǐng)說明理由.
(1);(2)
解析試題分析:(1)由橢圓上的點(diǎn)到焦點(diǎn)的最小距離為,即.又離心率.解出的值.即可求出.從而得到橢圓的方程.
(2)直線交于、兩點(diǎn),點(diǎn),若存在,使.由直線與橢圓的方程聯(lián)立以及韋達(dá)定理可得到關(guān)于的等式.再由向量的垂直同樣可得到關(guān)于點(diǎn)的坐標(biāo)的關(guān)系式.即可得到結(jié)論.
(1)設(shè)橢圓E的方程為 ,
由已知得 ,,從而 (2分)
橢圓E的方程為 (4分)
(2)由
設(shè) 、, 則 ,,
(6分)
由題意 , (8分)
要,就要, 又 ,
,
, (10分)
或,又,,
故存在 使得. (12分)
考點(diǎn):1.待定系數(shù)法求橢圓的方程.2.向量的知識(shí).3.解方程的思想.4.運(yùn)算能力.5.分析解決數(shù)學(xué)問題的能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,是拋物線為上的一點(diǎn),以S為圓心,r為半徑()做圓,分別交x軸于A,B兩點(diǎn),連結(jié)并延長SA、SB,分別交拋物線于C、D兩點(diǎn)。
(1)求證:直線CD的斜率為定值;
(2)延長DC交x軸負(fù)半軸于點(diǎn)E,若EC : ED =" 1" : 3,求的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知、為橢圓的左右焦點(diǎn),點(diǎn)為其上一點(diǎn),且有
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過的直線與橢圓交于、兩點(diǎn),過與平行的直線與橢圓交于、兩點(diǎn),求四邊形的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率為,短軸端點(diǎn)分別為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若,是橢圓上關(guān)于軸對(duì)稱的兩個(gè)不同點(diǎn),直線與軸交于點(diǎn),判斷以線段為直徑的圓是否過點(diǎn),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,已知?jiǎng)狱c(diǎn)到點(diǎn)的距離為,到軸的距離為,且.
(1)求點(diǎn)的軌跡的方程;
(2) 若直線斜率為1且過點(diǎn),其與軌跡交于點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓,過點(diǎn)且離心率為.
(1)求橢圓的方程;
(2)已知是橢圓的左右頂點(diǎn),動(dòng)點(diǎn)M滿足,連接AM交橢圓于點(diǎn)P,在x軸上是否存在異于A、B的定點(diǎn)Q,使得直線BP和直線MQ垂直.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓的中心和拋物線的頂點(diǎn)均為原點(diǎn),、的焦點(diǎn)均在軸上,過的焦點(diǎn)F作直線,與交于A、B兩點(diǎn),在、上各取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:
(1)求,的標(biāo)準(zhǔn)方程;
(2)若與交于C、D兩點(diǎn),為的左焦點(diǎn),求的最小值;
(3)點(diǎn)是上的兩點(diǎn),且,求證:為定值;反之,當(dāng)為此定值時(shí),是否成立?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
橢圓c:(a>b>0)的離心率為,過其右焦點(diǎn)F與長軸垂直的弦長為1,
(1)求橢圓C的方程;
(2)設(shè)橢圓C的左右頂點(diǎn)分別為A,B,點(diǎn)P是直線x=1上的動(dòng)點(diǎn),直線PA與橢圓的另一個(gè)交點(diǎn)為M,直線PB與橢圓的另一個(gè)交點(diǎn)為N,求證:直線MN經(jīng)過一定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(2013•浙江)如圖,點(diǎn)P(0,﹣1)是橢圓C1:+=1(a>b>0)的一個(gè)頂點(diǎn),C1的長軸是圓C2:x2+y2=4的直徑,l1,l2是過點(diǎn)P且互相垂直的兩條直線,其中l(wèi)1交圓C2于A、B兩點(diǎn),l2交橢圓C1于另一點(diǎn)D.
(1)求橢圓C1的方程;
(2)求△ABD面積的最大值時(shí)直線l1的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com