分析 由橢圓x2+$\frac{y^2}{4}$=1,可設(shè)P(cosθ,2sinθ),可得$tanα=\frac{2sinθ}{cosθ+1},tanβ=\frac{2sinθ}{cosθ-1}$,再利用和差公式及其三角函數(shù)的單調(diào)性與值域即可得出.
解答 解:由橢圓x2+$\frac{y^2}{4}$=1,可設(shè)P(cosθ,2sinθ),
∴$tanα=\frac{2sinθ}{cosθ+1},tanβ=\frac{2sinθ}{cosθ-1}$,$tan({α-β})=\frac{tanα-tanβ}{1+tanαtanβ}=-\frac{4}{3sinθ},sinθ∈[{-1,0})∪({0,1}]$,
∴$tan({α-β})∈({-∞,-\frac{4}{3}}]∪[{\frac{4}{3},+∞})$.
故答案為:$(-∞,-\frac{4}{3}]$∪$[\frac{4}{3},+∞)$.
點(diǎn)評(píng) 本題考查了橢圓的參數(shù)方程、三角函數(shù)化簡(jiǎn)求值,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{6}$ | B. | $\frac{6\sqrt{7}}{7}$ | C. | $\frac{8\sqrt{7}}{7}$ | D. | $\frac{4\sqrt{21}}{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{{{{42}^5}}}$ | B. | $\frac{1}{{{{42}^4}}}$ | C. | $\frac{{A}_{42}^{5}}{4{2}^{5}}$ | D. | $\frac{{P_{42}^4}}{{{{42}^5}}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 雙曲線x2-y2=1 | B. | 雙曲線x2-y2=1的右支 | ||
C. | 雙曲線x2-y2=1且x≥0,y≥0 | D. | 以上結(jié)論都不對(duì) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com