【題目】點P是雙曲線 ﹣y2=1的右支上一點,M、N分別是(x+ 2+y2=1和(x﹣ 2+y2=1上的點,則|PM|﹣|PN|的最大值是(
A.2
B.4
C.6
D.8

【答案】C
【解析】解:雙曲線 ﹣y2=1中,如圖:
∵a=2,b=1,c= ,
∴F1(﹣ ,0),F(xiàn)2 ,0),
∴|MP|≤|PF1|+|MF1|,…①
∵|PN|≥|PF2|﹣|NF2|,
可得﹣|PN|≤﹣|PF2|+|NF2|,…②
∴①②相加,得
|PM|﹣|PN|≤|PF1|+|MF1|﹣|PF2|+|NF2|
=(|PF1|﹣|PF2|)+|MF1|+|NF2|
∵|PF1|﹣|PF2|=2a=2×2=4,|MF1|=|NF2|=1
∴|PM|﹣|PN|≤4+1+1=6
所以答案是:C

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】以下命題正確的是(
A.經(jīng)過空間中的三點,有且只有一個平面
B.空間中,如果兩個角的兩條邊分別對應平行,那么這兩個角相等
C.空間中,兩條異面直線所成角的范圍是(0, ]
D.如果直線l平行于平面α內(nèi)的無數(shù)條直線,則直線l平等于平面α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓 的左右焦點分別為F1 , F2 , 離心率為 ,過點F1且垂直于x軸的直線被橢圓截得的弦長為 ,直線l:y=kx+m與橢圓交于不同的A,B兩點.
(1)求橢圓C的方程;
(2)若在橢圓C上存在點Q滿足: (O為坐標原點).求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列{an}滿足a1=2, ;數(shù)列{bn}的前n項和為Sn , 且 . (Ⅰ)求數(shù)列{an}和{bn}的通項公式;
(Ⅱ)把數(shù)列{an}和{bn}的公共項從小到大排成新數(shù)列{cn},試寫出c1 , c2 , 并證明{cn}為等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1 , M,N分別是A1B,B1C1的中點.

(1)求證:MN⊥平面A1BC;
(2)求直線BC1和平面A1BC所成的角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}的公差d不等于0,Sn是其前n項和,給出下列命題:
①給定n(n≥2,且n∈N*),對于一切k∈N*(k<n),都有ank+an+k=2an成立;
②存在k∈N* , 使得ak﹣ak+1與a2k+1﹣a2k3同號;
③若d>0.且S3=S8 , 則S5與S6都是數(shù)列{Sn}中的最小項
④點(1, ),(2, ),(3, ),…,(n, )(n∈N*),…,在同一條直線上.
其中正確命題的序號是 . (把你認為正確的命題序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校擬在廣場上建造一個矩形花園,如圖所示,中間是完全相同的兩個橢圓型花壇,每個橢圓型花壇的面積均為216π平方米,兩個橢圓花壇的距離是1.5米.整個矩形花壇的占地面積為S.
(注意:橢圓面積為πab,其中a,b分別為橢圓的長短半軸長)

(1)根據(jù)圖中所給數(shù)據(jù),試用a、b表示S;
(2)當橢圓形花壇的長軸長為多少米時,所建矩形花園占地最少?并求出最小面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+bx+3a+b是偶函數(shù),且其定義域為[a﹣1,2a],則( )
A. ,b=0
B.a=﹣1,b=0
C.a=1,b=1
D.a= ,b=﹣1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于二次函數(shù)y=﹣4x2+8x﹣3,
(1)指出圖象的開口方向、對稱軸方程、頂點坐標;
(2)求函數(shù)的最大值或最小值;
(3)寫出函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習冊答案