【題目】已知等差數(shù)列{an}的公差d不等于0,Sn是其前n項和,給出下列命題:
①給定n(n≥2,且n∈N*),對于一切k∈N*(k<n),都有ank+an+k=2an成立;
②存在k∈N* , 使得ak﹣ak+1與a2k+1﹣a2k3同號;
③若d>0.且S3=S8 , 則S5與S6都是數(shù)列{Sn}中的最小項
④點(1, ),(2, ),(3, ),…,(n, )(n∈N*),…,在同一條直線上.
其中正確命題的序號是 . (把你認為正確的命題序號都填上)

【答案】①③④
【解析】解:對于①,由等差中項的性質(zhì),可得給定n,對于一切k∈N+(k<n),都有ank+an+k=2an , 故①正確;
對于②,ak﹣ak+1和ak﹣ak1符號相反,故②不正確;
對于③,當(dāng)d>0,且S3=S8時,可得a1<0,a4+a5+a6+a7+a8=0,即5a6=0,a6=0,
則S5和S6都是{Sn}中的最小項,故③正確;
對于④,因為等差數(shù)列{an}的公差d≠0,所以Sk=ka1+ , =a1+ d
當(dāng)k≥2(k∈N)時, = = d(d為常數(shù)),
所以點(1, ),(2, ),(3, ),…,(n, )(n∈N*),…,在同一條直線上,故④正確.
所以答案是:①③④.
【考點精析】解答此題的關(guān)鍵在于理解命題的真假判斷與應(yīng)用的相關(guān)知識,掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關(guān)系,以及對等差數(shù)列的性質(zhì)的理解,了解在等差數(shù)列{an}中,從第2項起,每一項是它相鄰二項的等差中項;相隔等距離的項組成的數(shù)列是等差數(shù)列.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在底面為平行四邊形的四棱錐O﹣ABCD中,BC⊥平面OAB,E為OB中點,OA=AD=2AB=2,OB=

(1)求證:平面OAD⊥平面ABCD;
(2)求二面角B﹣AC﹣E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下命題:
①若x≠1或y≠2,則x+y≠3;
②若空間向量 , 與空間中任一向量都不能組成空間的一組基底,則 共線;
③命題“x∈R,使得x2+x+1<0”的否定是:“x∈R,均有x2+x+1<0”;
④若A、B為兩個定點,K為正常數(shù),若|PA|+|PB|=K,則動點P的軌跡是橢圓;
⑤已知拋物線y2=2px,以過焦點的一條弦AB為直徑作圓,則此圓與準(zhǔn)線相切.
其中真命題有( )個.
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 (a>b>0)的左、右焦點分別為F1(﹣3,0)、F2(3,0),直線y=kx與橢圓交于A、B兩點.
(1)若三角形AF1F2的周長為 ,求橢圓的標(biāo)準(zhǔn)方程;
(2)若 ,且以AB為直徑的圓過橢圓的右焦點,求直線y=kx斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】點P是雙曲線 ﹣y2=1的右支上一點,M、N分別是(x+ 2+y2=1和(x﹣ 2+y2=1上的點,則|PM|﹣|PN|的最大值是(
A.2
B.4
C.6
D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax+ 的圖象經(jīng)過點A(1,1),B(2,﹣1).
(1)求函數(shù)f(x)的解析式;
(2)判斷函數(shù)f(x)在(0,+∞)上的單調(diào)性并用定義證明;
(3)求f(x)在區(qū)間[ ,1]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)判斷函數(shù)f(x)在區(qū)間[0,+∞)上的單調(diào)性,并用定義證明其結(jié)論;
(2)求函數(shù)f(x)在區(qū)間[2,9]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某運動員每次投籃命中的概率都是40%.現(xiàn)采用隨機模擬的方法估計該運動員三次投籃恰有一次命中的概率:先由計算器產(chǎn)生0到9之間取整數(shù)值的隨機數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個隨機數(shù)作為一組,代表三次投籃的結(jié)果.經(jīng)隨機模擬產(chǎn)生了如下20組隨機數(shù):907,966,191,925,271,932,812,458,569,683,431,257,393,027,556,488,730,113,537,989.據(jù)此估計,該運動員三次投籃恰有一次命中的概率為(
A.0.25
B.0.2
C.0.35
D.0.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體ABCD﹣A′B′C′D′中, .設(shè)點F在線段CC'上,直線EF與平面A'BD所成的角為α,則sinα的取值范圍是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案