已知是橢圓的右焦點,圓與軸交于兩點,是橢圓與圓的一個交點,且.
(Ⅰ)求橢圓的離心率;
(Ⅱ)過點與圓相切的直線與的另一交點為,且的面積等于,求橢圓的方程.
科目:高中數(shù)學 來源: 題型:解答題
如圖,在平面直角坐標系中,已知,,,直線與線段、分別交于點、.
(1)當時,求以為焦點,且過中點的橢圓的標準方程;
(2)過點作直線交于點,記的外接圓為圓.
①求證:圓心在定直線上;
②圓是否恒過異于點的一個定點?若過,求出該點的坐標;若不過,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知、分別是橢圓: 的左、右焦點,點在直線上,線段的垂直平分線經(jīng)過點.直線與橢圓交于不同的兩點、,且橢圓上存在點,使,其中是坐標原點,是實數(shù).
(Ⅰ)求的取值范圍;
(Ⅱ)當取何值時,的面積最大?最大面積等于多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的離心率為,且經(jīng)過點.
(Ⅰ)求橢圓的方程;
(Ⅱ)如果過點的直線與橢圓交于兩點(點與點不重合),
①求的值;
②當為等腰直角三角形時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知橢圓C: 的左、右焦點分別為,離心率為,點A是橢圓上任一點,的周長為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點任作一動直線l交橢圓C于兩點,記,若在線段上取一點R,使得,則當直線l轉動時,點R在某一定直線上運動,求該定直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在平面直角坐標系中,點為動點,分別為橢圓的左右焦點.已知△為等腰三角形.(1)求橢圓的離心率;(2)設直線與橢圓相交于兩點,是直線上的點,滿足,求點的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知△的兩個頂點的坐標分別是,且所在直線的斜率之積等于.
(Ⅰ)求頂點的軌跡的方程,并判斷軌跡為何種圓錐曲線;
(Ⅱ)當時,過點的直線交曲線于兩點,設點關于軸的對稱
點為(不重合) 試問:直線與軸的交點是否是定點?若是,求出定點,若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,為半圓,為半圓直徑,為半圓圓心,且,為線段的中點,已知,曲線過點,動點在曲線上運動且保持的值不變.
(I)建立適當?shù)钠矫嬷苯亲鴺讼,求曲線的方程;
(II)過點的直線與曲線交于兩點,與所在直線交于點,,證明:為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知動圓過定點A(4,0), 且在y軸上截得的弦MN的長為8.
(Ⅰ) 求動圓圓心的軌跡C的方程;
(Ⅱ) 已知點B(-1,0), 設不垂直于x軸的直線l與軌跡C交于不同的兩點P, Q, 若x軸是的角平分線, 證明直線l過定點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com