11.如圖,直線ED與圓相切于點D,且平行于弦BC,連接EC并延長,交圓于點A,弦BC和AD相交于點F.
(I)求證:AB•FC=AC•FB;
(Ⅱ)若D、E、C、F四點共圓,且∠ABC=∠CAB,求∠BAC.

分析 (I)連接CD,證明:△CFD∽△ACD,得到$\frac{CF}{AC}=\frac{BF}{BA}$,即可證明AB•FC=AC•FB;
(Ⅱ)證明∠ACF=∠CFA.∠EAD=∠DAB,即可求∠BAC.

解答 (I)證明:連接CD,
∵直線ED與圓相切于點D,
∴∠EDC=∠EAD,
∵ED∥BC,
∴∠EDC=∠DCB,
∴∠EAD=∠DCB,
∴∠CAD=∠DCF,
∵∠CDF=∠ADC,
∴△CFD∽△ACD,
∴$\frac{CF}{AC}=\frac{BF}{BA}$,
∴AB•FC=AC•FB;
(Ⅱ)解:∵D、E、C、F四點共圓,
∴∠CFA=∠CED,
∵ED∥BC,
∴∠ACF=∠CED,
∴∠ACF=∠CFA.
由(I)可知∠EAD=∠DCB,∠DCB=∠DAB,
∴∠EAD=∠DAB,
設(shè)∠EAD=∠DAB=x,則∠ABC=∠CAB=2x,
∴∠CFA=∠FBA+∠FAB=3x,
在等腰△ACF中,∠CFA+∠ACF+∠CAF=π=7x,
∴x=$\frac{π}{7}$
∴∠BAC=2x=$\frac{2π}{7}$.

點評 本題考查圓的切線的性質(zhì),考查四點共圓,考查三角形相似的判定與性質(zhì),考查學生分析解決問題的能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

1.已知△ABC的外接圓為⊙O,∠B的平分線交圓O于D,過D作圓O的切線DE與BC的延長線交于E,連接AD,CD,過E再作圓的割線交圓O于F,H.
(1)求證:∠DEB=∠ADB;
(2)若△ABC為邊長為2的等邊三角形,且HF=FE,試求HF的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t-1}\end{array}\right.$(t為參數(shù),t∈R),設(shè)平面直角坐標系原點與極坐標系極點重合,x軸正半軸與極軸重合,且曲線C的極坐標方程為ρ2=$\frac{12}{4co{s}^{2}θ+3si{n}^{2}θ}$.
(1)求直線l的普通方程和曲線C的直角坐標方程:
(2)求曲線C上的點到直線l距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知曲線C的極坐標方程為ρsinθ+2ρcosθ=20,將曲線C1:$\left\{\begin{array}{l}{x=cosα}\\{y=sinα}\end{array}\right.$(α為參數(shù))經(jīng)過伸縮變換$\left\{\begin{array}{l}{x′=2x}\\{y′=3y}\end{array}\right.$后得到C2
(1)求曲線C2的參數(shù)方程;
(2)若點M在曲線C2上運動,試求出M到曲線C的距離d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.在直角坐標系xOy中,過點P(2,$\frac{3}{2}$)作傾斜角為α的直線l與曲線C:(x-1)2+(y-2)2=1相交于不同的兩點M,N.
(Ⅰ)寫出直線l的參數(shù)方程與曲線C的極坐標方程;
(Ⅱ)求$\frac{1}{|PM|}$+$\frac{1}{|PN|}$取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,AB是半圓的直徑,C是AB延長線上一點,CD切半圓于點D,CD=2,DE⊥AB,垂足為E,且AE:EB=4:1求BC的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,已知AB,ACD分別為圓的一條切線和一條割線,M,N為圓上兩點,DM延長線與CN延長線交于點E.
(Ⅰ)若EN:ED=1:4,求MN:CD的值;
(Ⅱ)若MN∥AE,求證AE=AB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.在極坐標系中,曲線ρcos(θ-$\frac{π}{3}}$)=1與極軸的交點到極點的距離為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.化簡:sin2A+sin2B+2sinAsinBcos(A+B).

查看答案和解析>>

同步練習冊答案