20.在極坐標(biāo)系中,曲線ρcos(θ-$\frac{π}{3}}$)=1與極軸的交點(diǎn)到極點(diǎn)的距離為2.

分析 由曲線ρcos(θ-$\frac{π}{3}}$)=1展開(kāi)可得:$ρ(\frac{1}{2}cosθ+\frac{\sqrt{3}}{2}sinθ)$=1,把y=ρsinθ,x=ρcosθ代入化為直角坐標(biāo)方程,令y=0,可得x,進(jìn)而得出答案.

解答 解:由曲線ρcos(θ-$\frac{π}{3}}$)=1展開(kāi)可得:$ρ(\frac{1}{2}cosθ+\frac{\sqrt{3}}{2}sinθ)$=1,可得直角坐標(biāo)方程:x+$\sqrt{3}$y=2,
令y=0,可得x=2.
∴曲線ρcos(θ-$\frac{π}{3}}$)=1與極軸的交點(diǎn)到極點(diǎn)的距離為2.
故答案為:2.

點(diǎn)評(píng) 本題考查了極坐標(biāo)化為直角坐標(biāo)方程、和差公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知C點(diǎn)在⊙O直徑BE的延長(zhǎng)線上,CA切⊙O于A點(diǎn),CD是∠ACB的平分線且交AE于點(diǎn)F,交AB于點(diǎn)D.
(1)求∠ADF的度數(shù);
(2)若AB=AC,求$\frac{AC}{BC}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,直線ED與圓相切于點(diǎn)D,且平行于弦BC,連接EC并延長(zhǎng),交圓于點(diǎn)A,弦BC和AD相交于點(diǎn)F.
(I)求證:AB•FC=AC•FB;
(Ⅱ)若D、E、C、F四點(diǎn)共圓,且∠ABC=∠CAB,求∠BAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖所示,過(guò)點(diǎn)P分別做圓O的切線PA、PB和割線PCD,弦BE交CD于F,且AE∥CD.
(Ⅰ)證明:P、B、F、A四點(diǎn)共圓;
(Ⅱ)若四邊形PBFA的外接圓的半徑為$\sqrt{13}$,且PC=CF=FD=3,求圓O的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知變換T:$[\begin{array}{l}{x}\\{y}\end{array}]$→$[\begin{array}{l}{{x}^{′}}\\{y′}\end{array}]$=$[\begin{array}{l}{x+2y}\\{y}\end{array}]$,試寫(xiě)出變換T對(duì)應(yīng)的矩陣A,并求出其逆矩陣A-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.某研究性學(xué)習(xí)小組對(duì)4月份晝夜溫差大小與花卉種子發(fā)芽多少之間的關(guān)系研究,記錄了4月1日至4月5日的每天晝夜溫差與實(shí)驗(yàn)室每天100顆種子浸泡后的發(fā)芽數(shù),如下表:
日 期4月1日4月2日4月3日4月4日4月5日
溫差x(℃)101113128
發(fā)芽數(shù)y(顆)2325302616
(Ⅰ)請(qǐng)根據(jù)表中 4月2日至4月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}x$+$\stackrel{∧}{a}$;若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2顆,則認(rèn)為得到的線性回歸方程是可靠的,請(qǐng)用 4月1日和4月5日數(shù)據(jù)檢驗(yàn)?zāi)闼玫木性回歸方程是否可靠?
(Ⅱ)從4月1日至4月5日中任選2天,記發(fā)芽的種子數(shù)分別為m,n,求事件“m,n均不小于25”的概率.
(參考公式:回歸直線的方程是$\stackrel{∧}{y}$=$\stackrel{∧}x$+$\stackrel{∧}{a}$,其中$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehata$=$\overline{y}$-b$\overline{x}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.為及時(shí)了解適齡公務(wù)員對(duì)開(kāi)放生育二胎政策的態(tài)度,某部門(mén)隨機(jī)調(diào)查了90位30歲到40歲的公務(wù)員,得到情況如表:
(1)完成表格,并判斷是否有99%以上的把握認(rèn)為“生二胎意愿與性別有關(guān)”,并說(shuō)明理由;
(2)現(xiàn)把以上頻率當(dāng)作概率,若從社會(huì)上隨機(jī)獨(dú)立抽取三位30歲到40歲的男公務(wù)員訪問(wèn),求這三人中至少有一人有意愿生二胎的概率.
(2)已知15位有意愿生二胎的女性公務(wù)員中有兩位來(lái)自省婦聯(lián),該部門(mén)打算從這15位有意愿生二胎的女性公務(wù)員中隨機(jī)邀請(qǐng)兩位來(lái)參加座談,設(shè)邀請(qǐng)的2人中來(lái)自省女聯(lián)的人數(shù)為X,求X的公布列及數(shù)學(xué)期望E(X).
男性公務(wù)員女性公務(wù)員總計(jì)
有意愿生二胎3015
無(wú)意愿生二胎2025
總計(jì)
附:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(k2≥k00.0500.0100.001
k03.8416.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.臨沂市某高二班主任對(duì)全班50名學(xué)生進(jìn)行了作業(yè)量多少的調(diào)查:喜歡玩游戲的27人中,認(rèn)為作業(yè)多的有18人,不喜歡玩游戲的同學(xué)中認(rèn)為作業(yè)多的有8人.
(1)根據(jù)以上數(shù)據(jù)建立一個(gè)2×2的列聯(lián)表;
(2)試通過(guò)計(jì)算說(shuō)明在犯錯(cuò)誤的概率不超過(guò)多少的前提下認(rèn)為喜歡玩游戲與作業(yè)量的多少有關(guān)系?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知$\overrightarrow{m}$=($\sqrt{3}$sin$\frac{x}{4}$,-1),$\overrightarrow{n}$=(cos$\frac{x}{4}$,cos2$\frac{x}{4}$),記f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$.
(1)求f(x)的單調(diào)遞減區(qū)間及對(duì)稱(chēng)中心;
(2)在△ABC中,∠A、∠B、∠C對(duì)邊分別為a、b、c,若f(A)=-$\frac{1}{2}$,a=2,求△ABC面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案