15.過原點向圓x2+y2-2x-4y+4=0引切線,則切線方程為y=$\frac{3}{4}$x或x=0.

分析 求出圓的標(biāo)準(zhǔn)方程,求出圓心和半徑,根據(jù)直線和圓相切的等價條件進行求解即可.

解答 解:圓的標(biāo)準(zhǔn)方程為(x-1)2+(y-2)2=1,
則圓心為(1,2),半徑R=1,
若切線斜率k不存在,即x=0時,滿足條件;
若切線斜率k存在,則設(shè)切線方程為y=kx,
即kx-y=0,
圓心到直線的距離d=$\frac{|k-2|}{\sqrt{1{+k}^{2}}}$=1,
得|k-2|=$\sqrt{1{+k}^{2}}$,
平方得k2-4k+4=1+k2,
即k=$\frac{3}{4}$,此時切線方程為y=$\frac{3}{4}$x,
綜上,切線方程為:y=$\frac{3}{4}$x或x=0.
故答案為:y=$\frac{3}{4}$x或x=0.

點評 本題主要考查直線和圓位置關(guān)系的應(yīng)用,根據(jù)直線和圓相切與半徑之間的關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.將圓O:x2+y2=4上各點的縱坐標(biāo)變?yōu)樵瓉淼囊话?nbsp;(橫坐標(biāo)不變),得到曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)過點$F(\sqrt{3},0)$的直線l與曲線C交于A,B兩點,N為線段AB的中點,延長線段ON交曲線C于點E.求證:$\overrightarrow{OE}=2\overrightarrow{ON}$的充要條件是|AB|=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若方程x2+y2+2λx+2λy+2λ2-λ+1=0表示圓,則λ的取值范圍是( 。
A.(1,+∞)B.[$\frac{1}{5}$,1]C.(1,+∞)∪(-∞,$\frac{1}{5}$)D.R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.為研究語文成績和英語成績之間是否具有線性相關(guān)關(guān)系,統(tǒng)計兩科成績得到如圖所示的散點圖(兩坐標(biāo)軸單位長度相同),用回歸直線$\hat y$=$\hat b$x+$\hat a$近似地刻畫其相關(guān)系,根據(jù)圖形,以下結(jié)論最有可能成立的是(  )
A.線性相關(guān)關(guān)系較強,b的值為3.25B.線性相關(guān)關(guān)系較強,b的值為0.83
C.線性相關(guān)關(guān)系較強,b的值為-0.87D.線性相關(guān)關(guān)系太弱,無研究價值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知圓C:(x-1)2+(y-3)2=2被直線y=3x+b所截得的線段的長度等于2,則b等于( 。
A.±$\sqrt{5}$B.±$\sqrt{10}$C.±2$\sqrt{5}$D.±$\sqrt{30}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.對甲、乙兩名籃球運動員分別在100場比賽中的得分情況進行統(tǒng)計,做出甲的得分頻率分布直方圖如圖所示,列出乙的得分統(tǒng)計表如表所示:
分值[0,10)[10,20)[20,30)[30,40)
場數(shù)10204030
(1)估計甲在一場比賽中得分大于等于20分的概率.
(2)判斷甲、乙兩名運動員哪個成績更穩(wěn)定.(結(jié)論不要求證明)
(3)試?yán)眉椎念l率分布直方圖估計甲每場比賽的平均得分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.如圖所示將若干個點擺成三角形圖案,每條邊(色括兩個端點)有n(n>l,n∈N*)個點,相應(yīng)的圖案中總的點數(shù)記為an,則$\frac{9}{{{a_2}{a_3}}}$+$\frac{9}{{{a_3}{a_4}}}$+$\frac{9}{{{a_4}{a_5}}}$+…+$\frac{9}{{{a_{2016}}{a_{2017}}}}$=$\frac{2015}{2016}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)x是實數(shù),定義[x]不超過實數(shù)x的最大整數(shù),如:[2]=2,[2.3]=2,[-2.3]=-3,記函數(shù)f(x)=x-[x],函數(shù)g(x)=[3x+1]+$\frac{1}{2}$給出下列命題:
①函數(shù)f(x)在[-$\frac{1}{6}$,$\frac{2}{3}$]上有最小值,無最大值;       
②f(-$\frac{1}{2}$)=f($\frac{1}{2}$)且f(x)為偶函數(shù);
③若g(x)-2x=0的解集為M,則集合M的所有元素之和為-2;
④設(shè)an=f($\frac{201{2}^{n}}{2013}$),則當(dāng)n為偶數(shù)時$\sum_{i=1}^{n}$ai=$\frac{n}{2}$,當(dāng)n為奇數(shù)時,則$\sum_{i=1}^{n}$ai=$\frac{n-1}{2}$+$\frac{2012}{2013}$.
其中正確的命題的序號是①③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖是兩個獨立的轉(zhuǎn)盤(A)、(B),在兩個圖中三個扇形區(qū)域的圓心角分別為60°、120°、180°.用這兩個轉(zhuǎn)盤進行游戲,規(guī)則是:同時轉(zhuǎn)動兩個轉(zhuǎn)盤待指針停下(當(dāng)兩個轉(zhuǎn)盤中任意一個指針恰好落在分界線時,則這次轉(zhuǎn)動無效,重新開始),記轉(zhuǎn)盤(A)指針?biāo)鶎Φ膮^(qū)域為x,轉(zhuǎn)盤(B)指針?biāo)鶎Φ膮^(qū)域為y,x、y∈{1,2,3},設(shè)x+y的值為ξ.
(Ⅰ)求x<2且y>1的概率;
(Ⅱ)求隨機變量ξ的分布列與數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案