5.已知x,y滿足不等式$\left\{\begin{array}{l}{x-4y≤-3}\\{3x+5y≤25}\\{x≥1}\end{array}\right.$,且函數(shù)z=2x+y-a的最大值為8,則常數(shù)a的值為4.

分析 作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合進(jìn)行求解即可.

解答 解:作出不等式組對應(yīng)的平面區(qū)域如圖:(陰影部分).
由z=2x+y-a得y=-2x+z+a,
平移直線y=-2x+z+a,
由圖象可知當(dāng)直線y=-2x+z+a經(jīng)過點(diǎn)C時(shí),直線y=-2x+z+a的截距最大,
此時(shí)z最大.
由$\left\{\begin{array}{l}{x-4y=-3}\\{3x+5y=25}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=5}\\{y=2}\end{array}\right.$,即C(5,2),
代入目標(biāo)函數(shù)z=2x+y-a得z=2×5+2-a=8.
得12-a=8,則a=4,
故答案為:4

點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知命題p:方程$\frac{x^2}{2-m}+\frac{y^2}{m-1}$=1所表示的圖形是焦點(diǎn)在y軸上的雙曲線,命題q:復(fù)數(shù)z=(m-3)+(m-1)i對應(yīng)的點(diǎn)在第二象限,又p或q為真,p且q為假,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{lnx-x}{x}$
(1)求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(2)對于任意的非零實(shí)數(shù)k,證明不等式(e+k2)ln(e+k2)>e+2k2恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知三個(gè)集合A={x|x2-3x+2=0},B={x∈R|x2-ax+a-1=0},C={x∈R|x2-bx+2=0},同時(shí)滿足B?A,C⊆A的實(shí)數(shù)a、b是否存在?若存在,求出a、b的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(2,4),直線l:x-2y+1=0.
(1)求過點(diǎn)A且平行于l的直線的方程;
(2)若點(diǎn)M在直線l上,且AM⊥l,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)點(diǎn) P在曲線y=e2x上,點(diǎn)Q在曲線y=$\frac{1}{2}$lnx上,則|PQ|的最小值為( 。
A.$\frac{{\sqrt{2}}}{2}$(1-ln2)B.$\sqrt{2}$(1-ln2)C.$\sqrt{2}$(1+ln2)D.$\frac{{\sqrt{2}}}{2}$(1+ln2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若f(x)=x2,則f(x)在x=1處的導(dǎo)數(shù)為( 。
A.2xB.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.若(x+$\frac{1}{x}$)(3x-$\frac{1}{x}$)n的展開式中各項(xiàng)的系數(shù)之和為64.
(Ⅰ)求n的值.
(Ⅱ)求展開式中的常數(shù)項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=ax2-bx+2,且f(x)<0的解集為(1,2).
(1)求f(x)的解析式;
(2)求f(x)在區(qū)間[-1,3]上的最大值與最小值.

查看答案和解析>>

同步練習(xí)冊答案