如果f(x+1)是奇函數(shù),則①-f(x+1)=f(-x+1),②-f(x+1)=f(-x-1),正確的是
 
.(填序號)
考點(diǎn):抽象函數(shù)及其應(yīng)用,函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)f(x+1)是奇函數(shù),便有f(-x+1)=-f(x+1).
解答: 解:∵f(x+1)是奇函數(shù);
∴f(-x+1)=-f(x+1);
∴①正確.
故答案為:①
點(diǎn)評:函數(shù)f(x+1)的自變量為x,所以x取-x時,負(fù)號可拿到括號外邊,要弄清函數(shù)的自變量,及理解奇函數(shù)的定義.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax3+bx(a,b為常數(shù),且a≠0)滿足條件:f(-x+5)=f(x-3)且方程f(x)=x有兩個相等實(shí)根.
(1)求f(x)的表達(dá)式;
(2)當(dāng)x∈[0,3)時,求函數(shù)f(x)的取值范圍;
(3)是否存在實(shí)數(shù)m,n(m<n)使f(x)的定義域和值域分別是[m,n]和[3m,3n],如果存在,求出m,n的值;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

推理過程“大前提:□,小前提:四邊形ABCD是矩形,結(jié)論:四邊形ABCD的對角線相等.”應(yīng)補(bǔ)充的大前提是(  )
A、矩形的對角線相等
B、等腰梯形的對角線相等
C、正方形的對角線相等
D、矩形的對邊平行且相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線ax2+by2=12的兩條動弦MA,MB所在直線的斜率分別為k1,k2
(1)已知a=b=3且A(-2,0),B(2,0),試證明:k1k2為定值.
(2)已知a=3,b=4.
①若A(-2,0),B(2,0),試判斷k1k2是否為定值?若是,求出定值;若不是,請說明理由.
②若定點(diǎn)M(1,-
3
2
)且k1k2=-
3
4
,試判斷直線AB是否過一定點(diǎn)?若是,求出定點(diǎn)坐標(biāo);若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a、b∈R+,且滿足4a+b+4ab=24,則a3b3+5的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若有且只有一個常數(shù)c使得對于任意x∈[a,2a],都有y∈[a,a2]滿足方程logaxy=c,則a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=3,a2=1,an+2=an+an+1,則a7=( 。
A、7B、20C、12D、23

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

探究函數(shù)f(x)=x+
4
x
,x∈(0,+∞)的性質(zhì),列表如下:
x0.511.51.71.922.12.22.33457
y8.554.174.054.00544.0054.024.044.355.87.57

(1)根據(jù)以上列表畫出f(x)的圖象,寫出f(x)的單調(diào)區(qū)間及f(x)的最值;
(2)證明:函數(shù)f(x)=x+
4
x
(x>0)在區(qū)間(0,2)上遞減.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

中心在原點(diǎn),焦點(diǎn)在x軸上的雙曲線,一條漸近線方程是y=
3
x,則雙曲線的離心率是( 。
A、
2
B、
3
2
C、
3
D、2

查看答案和解析>>

同步練習(xí)冊答案