19.已知點A(1,0),B(0,-1),P是曲線y=$\sqrt{1{-x}^{2}}$上的一個動點,則$\overrightarrow{AP}$•$\overrightarrow{BP}$的最大值是1$+\sqrt{2}$.

分析 設(shè)P(cosα,sinα),α∈[0,π],則 $\overrightarrow{BA}$=(1,1),$\overrightarrow{BP}$=(cosα,sinα+1),$\overrightarrow{AP}$=(cosα-1,sinα),由此能求出$\overrightarrow{AP}$•$\overrightarrow{BP}$的取值范圍.

解答 解:∵在平面直角坐標系中,A(1,0),B(0,-1),
P是曲線y=$\sqrt{1{-x}^{2}}$上一個動點,
∴設(shè)P(cosα,sinα),α∈[0,π],
∴$\overrightarrow{BA}$=(1,1),$\overrightarrow{BP}$=(cosα,sinα+1),$\overrightarrow{AP}$=(cosα-1,sinα),
$\overrightarrow{BP}$•$\overrightarrow{AP}$=-cosα+sinα+1=1+$\sqrt{2}$sin($α-\frac{π}{4}$),
則$\overrightarrow{AP}$•$\overrightarrow{BP}$的最大值是:1+$\sqrt{2}$.
故答案為:1+$\sqrt{2}$.

點評 本題考查向量的數(shù)量積的取值范圍的求法,是中檔題,解題時要認真審題,注意平面向量數(shù)量積的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.下表提供了某廠生產(chǎn)某產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標準煤)的幾組對照數(shù)據(jù),
 x 2 4 6 8 10
 y 4 5 7 9 10
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$,
(2)根據(jù)(1)中求出的線性回歸方程,預(yù)測生產(chǎn)20噸該產(chǎn)品的生產(chǎn)能耗是多少噸標準煤?
附:回歸直線的斜率和截距的最小二乘估計分別為:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=|2x-a|+|2x-4|,g(x)=|x-2|+1.
(1)a=0時,解不等式f(x)≥8;
(2)若對任意x1∈R,存在x2∈R,使得f(x1)=g(x2)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若實數(shù)x,y滿足x2<y2,則下列不等式成立的是(  )
A.x<yB.-x<yC.$\frac{1}{x}$<$\frac{1}{y}$D.|x|<|y|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知三棱錐S-ABC的三條側(cè)棱兩兩垂直且SA=SB=SC=1,則該三棱錐的外接球的體積為$\frac{\sqrt{3}}{2}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=t\\ y=m+t\end{array}\right.$(t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為3ρ2cos2θ+ρ2sin2θ=12,且曲線C的下焦點F在直線l上.
(1)若直線l與曲線C交于A,B兩點,求|FA|•|FB|的值;
(2)求曲線C的內(nèi)接矩形的周長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知實數(shù)a、b是利用計算機生產(chǎn)0~1之間的均勻隨機數(shù),設(shè)事件A=“(a-1)2+(b-1)2>$\frac{1}{4}$”則事件A發(fā)生的概率為( 。
A.1-$\frac{π}{16}$B.$\frac{π}{16}$C.1-$\frac{π}{4}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知p:方程x2-mx+1=0有兩個不等的正實根,q:方程4x2+4(m-2)x+1=0無實根.若p或q 為真,p且q為假.求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.等比數(shù)列{an}的各項均為正數(shù),且a5a6+a4a7=20,則lga1+lga2+…+lga10=5.

查看答案和解析>>

同步練習(xí)冊答案