分析 求出雙曲線的漸近線方程,設兩條漸近線的夾角為θ,由兩直線的夾角公式,可得tanθ=tan∠AOB,求出F到漸近線y=$\frac{a}$x的距離為b,即有|OB|=a,△OAB的面積可以表示為$\frac{1}{2}$a•atanθ,結合條件可得a,b的關系,再由離心率公式即可計算得到.
解答 解:由題意可得e=$\frac{c}{a}$=$\frac{\sqrt{5}}{2}$,a2+b2=c2,
雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的漸近線方程為y=±$\frac{a}$x,
設兩條漸近線的夾角為θ,
則tanθ=tan∠AOB=$\frac{\frac{a}-(-\frac{a})}{1+\frac{a}•(-\frac{a})}$=$\frac{2ab}{{a}^{2}-^{2}}$,
設FB⊥OB,則F到漸近線y=$\frac{a}$x的距離為d=$\frac{|bc|}{\sqrt{{a}^{2}+^{2}}}$=b,
即有|OB|=a,
則△OAB的面積可以表示為$\frac{1}{2}$•a•atanθ=$\frac{{a}^{3}b}{{a}^{2}-^{2}}$=$\frac{16}{3}$,
解得a=2$\sqrt{2}$,b=$\sqrt{2}$,c=$\sqrt{10}$,即2c=2$\sqrt{10}$.
故答案為:2$\sqrt{10}$.
點評 本題考查雙曲線的焦距的求法,注意運用雙曲線的漸近線方程和離心率公式,以及點到直線的距離公式,考查化簡整理的運算能力,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | f(x)=2cos(2x+$\frac{π}{4}$) | B. | f(x)=-$\sqrt{2}$cos(x-$\frac{π}{4}$) | C. | f(x)=-$\sqrt{2}$cos(2x-$\frac{3π}{4}$) | D. | f(x)=$\sqrt{2}$cos(2x-$\frac{π}{4}$) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{11}{2}$ | B. | $\frac{16}{3}$ | C. | $2\sqrt{7}$ | D. | 4 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $-\frac{{\sqrt{6}}}{2}$ | B. | $-\frac{{\sqrt{3}}}{2}$ | C. | $-\frac{{\sqrt{2}}}{2}$ | D. | -1 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ?x0∈R,x${\;}_{0}^{2}≠1$ | B. | ?x0∈R,x${\;}_{0}^{2}>1$ | C. | ?x∈R,x2=1 | D. | ?x∈R,x2≠1 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{\sqrt{6}}{4}$ | B. | $\frac{3}{4}$ | C. | $\frac{9}{16}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com