9.在△ABC中,∠BAC=75°,AB=3,AC=4,若點(diǎn)D,E都在邊BC上,并且∠BAD=∠CAE=30°,則$\frac{BD•BE}{CD•CE}$=( 。
A.$\frac{\sqrt{6}}{4}$B.$\frac{3}{4}$C.$\frac{9}{16}$D.$\sqrt{2}$

分析 根據(jù)條件便可由正弦定理分別得到$\frac{BD}{sin30°}=\frac{3}{sin∠BDA}①$,$\frac{BE}{sin35°}=\frac{3}{sin∠BEA}②$,$\frac{CE}{sin30°}=\frac{4}{sin∠AEC}③$,$\frac{CD}{sin35°}=\frac{4}{sin∠ADC}④$,而sin∠BDA=sin∠ADC,sin∠BEA=sin∠AEC,從而$\frac{①}{④}•\frac{②}{③}$便可求出$\frac{BD•BE}{CD•CE}$的值.

解答 解:如圖,由正弦定理得,$\frac{BD}{\frac{1}{2}}=\frac{3}{sin∠BDA}①$,$\frac{BE}{sin35°}=\frac{3}{sin∠AEB}②$,$\frac{CE}{\frac{1}{2}}=\frac{4}{sin∠AEB}③$,$\frac{CD}{sin35°}=\frac{4}{sin∠BDA}④$;
∴$\frac{①}{④}•\frac{②}{③}$得:$\frac{2sin35°•BD}{CD}•\frac{BE}{2sin35°•CE}=\frac{3}{4}•\frac{3}{4}$;
∴$\frac{BD•BE}{CD•CE}=\frac{9}{16}$.
故選C.

點(diǎn)評(píng) 考查正弦定理:$\frac{a}{sinA}=\frac{sinB}=\frac{c}{sinC}$,以及三角函數(shù)的誘導(dǎo)公式:sin(π-α)=sinα.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)$f(x)=\left\{\begin{array}{l}{log_5}x,x>0\\{2^x}\;\;,x≤0\end{array}\right.$,則$f(f(\frac{1}{25}))$=( 。
A.4B.$\frac{1}{4}$C.-4D.$-\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{^{2}}$=1的離心率為$\frac{\sqrt{5}}{2}$,過右焦點(diǎn)F的直線與兩條漸近線分別交于點(diǎn)A,B,且與其中一條漸近線垂直,若△OAB的面積為$\frac{16}{3}$,其中O為坐標(biāo)原點(diǎn),則雙曲線的焦距為2$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)平面上有直線L:y=2x,曲線C:y=$\frac{1}{2}$x3.又有下列方式定義數(shù)列{an}:
(1)a1=$\frac{1}{2}$;
(2)當(dāng)給定an后,作過點(diǎn)(an,0)且與y軸平行的直線,它與l的交點(diǎn)記為Pn,再過點(diǎn)Pn且與x軸平行的直線,它與C的交點(diǎn)記為Qn,定義an+1為Qn的橫坐標(biāo).試求數(shù)列{an}的通項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.y=cos$\frac{cosx}{2+sinx}$(x∈R)的值域?yàn)閇cos$\frac{\sqrt{3}}{3}$,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.{an}的相鄰兩項(xiàng)an,an+1是方程x2-cnx+($\frac{1}{3}$)n=0的兩根,且a1=2,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若tanα=2,則sin2α-cos2α的值為( 。
A.$\frac{4}{5}$B.-$\frac{4}{5}$C.$\frac{3}{5}$D.-$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在等差數(shù)列{an}中,已知a4=2,a8=14,則a15等于(  )
A.32B.-32C.35D.-35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)非零實(shí)數(shù)a,b滿足a<b,則下列不等式中一定成立的是( 。
A.a+b>0B.a-b<0C.ab<b2D.$\frac{1}{a}$<$\frac{1}$

查看答案和解析>>

同步練習(xí)冊(cè)答案