若函數(shù)f(x)的圖象在區(qū)間[a,b]上連續(xù)不斷,給定下列的命題:
①若f(a)•f(b)<0,則f(x)在區(qū)間[a,b]上恰有1個零點;
②若f(a)•f(b)<0,則f(x)在區(qū)間[a,b]上至少有1個零點;
③若f(a)•f(b)>0,則f(x)在區(qū)間[a,b]上沒有零點;
④若f(a)•f(b)>0,則f(x)在區(qū)間[a,b]上可能有零點.
其中正確的命題有
 
 (填寫正確命題的序號).
考點:函數(shù)零點的判定定理
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由函數(shù)的零點的判定定理可知,是充分條件但不是必要條件,從而解得.
解答: 解:若函數(shù)f(x)的圖象在區(qū)間[a,b]上連續(xù)不斷,
①若f(a)•f(b)<0,則f(x)在區(qū)間[a,b]上至少有1個零點,故不正確;
②若f(a)•f(b)<0,則f(x)在區(qū)間[a,b]上至少有1個零點,正確;
③若f(a)•f(b)>0,則f(x)在區(qū)間[a,b]上沒有零點,不正確,可以二次函數(shù)為反例;
④若f(a)•f(b)>0,則f(x)在區(qū)間[a,b]上可能有零點,正確.
故答案為:②④.
點評:本題考查了學(xué)生對函數(shù)的零點的判定定理的掌握,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓A:(x+2)2+y2=
25
4
,圓B:(x-2)2+y2=
1
4
,動圓P與圓A、圓B均外切.
(Ⅰ) 求動圓P的圓心的軌跡C的方程;
(Ⅱ)過圓心B的直線與曲線C交于M、N兩點,求|MN|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2
3
sinxcosx-2cos2x+1.
(Ⅰ)當(dāng)x∈[0,
π
2
]時,求函數(shù)f(x)的最大值;
(Ⅱ)若f(α)=
8
5
(α∈[0,
π
6
]),求cos2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二次函數(shù)f(x)=x2+bx+c在(m,m+1)內(nèi)有兩個不同的實根,則( 。
A、f(m)和f(m+1)都大于
1
4
B、f(m)和f(m+1)至少有一個大于
1
4
C、f(m)和f(m+1)都小于
1
4
D、f(m)和f(m+1)至少有一個小于
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|log2x-m|log2x+2log2x-3(m∈R).
(1)若m=1,求函數(shù)f(x)在區(qū)間[
1
4
,4
]的值域;
(2)若函數(shù)y=f(x)在(0,+∞)上為增函數(shù),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=
3
sin2ωx+1(ω>0)在區(qū)間[-
2
,
π
2
]上為增函數(shù),則ω的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖的程序框圖,那么輸出的S=(  )
A、720B、120
C、24D、-120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在平面直角坐標(biāo)系xoy中,橢圓C:
x2
a2
+
y2
b2
=1,長半軸長為4,離心率為
1
2

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若點E(0,1),問是否存在直線l與橢圓交于M,N兩點且|ME|=|NE|,若存在,求出直線l斜率的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2sinxcosx+m(sinx+cosx)-2,
(1)當(dāng)m=1時,求f(x)的值域;
(2)若對于任意的x∈R,f(x)<0恒成立,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案