【題目】在公差不為零的等差數(shù)列{an}中,已知a1=1,且a1,a2,a5依次成等比數(shù)列.?dāng)?shù)列{bn}滿足bn+1=2bn-1,且b1=3.
(1)求{an},{bn}的通項(xiàng)公式;
(2)設(shè)數(shù)列的前n項(xiàng)和為Sn,試比較Sn與1-的大。
【答案】見解析
【解析】(1)設(shè)數(shù)列{an}的公差為d.
因?yàn)閍1=1,且a1,a2,a5依次成等比數(shù)列,
所以a=a1·a5,即(1+d)2=1·(1+4d),
所以d2-2d=0,解得d=2(d=0不合要求,舍去).
所以an=1+2(n-1)=2n-1.
因?yàn)閎n+1=2bn-1,所以bn+1-1=2(bn-1).
所以{bn-1}是首項(xiàng)為b1-1=2,公比為2的等比數(shù)列.
所以bn-1=2×2n-1=2n.
所以bn=2n+1.
(2)因?yàn)?/span>==-,
所以Sn=++…+=1-,
于是Sn-=1--1+=-=.
所以當(dāng)n=1,2時(shí),2n=2n,Sn=1-;
當(dāng)n≥3時(shí),2n<2n,Sn<1-.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果一個(gè)幾何體的主視圖與左視圖是全等的長(zhǎng)方形,邊長(zhǎng)分別是,如圖所示,俯視圖是一個(gè)邊長(zhǎng)為的正方形.
(1)求該幾何體的表面積;
(2)求該幾何體的外接球的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)有兩個(gè)零點(diǎn),求滿足條件的最小正整數(shù)的值;
(3)若方程,有兩個(gè)不相等的實(shí)數(shù)根,比較與0的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)。
(Ⅰ)當(dāng)a=2,求函數(shù)f(x)的圖象在點(diǎn)(1,f(1) )處的切線方程;
(Ⅱ)當(dāng)a>0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,已知某曲線C的極坐標(biāo)方程為,直線的極坐標(biāo)方程為
(1)求該曲線C的直角坐標(biāo)系方程及離心率
(2)已知點(diǎn)為曲線C上的動(dòng)點(diǎn),求點(diǎn)到直線的距離的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=xlnx,g(x)=﹣x2+ax﹣2.
(1)若曲線f(x)=xlnx在x=1處的切線與函數(shù)g(x)=﹣x2+ax﹣2也相切,求實(shí)數(shù)a的值;
(2)求函數(shù)f(x)在上的最小值;
(3)證明:對(duì)任意的x∈(0,+∞),都有成立
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)上是減函數(shù),求實(shí)數(shù)a的最小值;
(Ⅲ)若,,使成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的右焦點(diǎn)為,且點(diǎn)在橢圓上.
⑴求橢圓的標(biāo)準(zhǔn)方程;
⑵已知?jiǎng)又本過點(diǎn)且與橢圓交于兩點(diǎn).試問軸上是否存在定點(diǎn),使得恒成立?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com