【題目】如果一個幾何體的主視圖與左視圖是全等的長方形,邊長分別是,如圖所示,俯視圖是一個邊長為的正方形.

(1)求該幾何體的表面積;

(2)求該幾何體的外接球的體積.

【答案】(1);(2).

【解析】試題分析:(1)該幾何體是長方體,其底面是邊長為4的正方形,高為2,求其3對面積之和;(2)由長方體與球的性質(zhì),可得長方體的體對角線是其外接球的直徑,求出其面積.

試題解析:

(1)由題意可知,該幾何體是長方體,其底面是邊長為4的正方形,高為2,因此該幾何體的表面積是2×4×4+4×4×2=64.

(2)由長方體與球的性質(zhì),可得長方體的體對角線是其外接球的直徑,

則外接球的半徑r,

因此外接球的體積Vπr3×27π36π

所以該幾何體的外接球的體積是36π.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)通過調(diào)查問卷(滿分50分)的形式對本企業(yè)900名員工的工作滿意度進行調(diào)查,并隨機抽取了其中30名員工(16名女員工,14名男員工)的得分,如下表:

47

36

32

48

34

44

43

47

46

41

43

42

50

43

35

49

37

35

34

43

46

36

38

40

39

32

48

33

40

34

(1)根據(jù)以上數(shù)據(jù),估計該企業(yè)得分大于45分的員工人數(shù);

(2)現(xiàn)用計算器求得這30名員工的平均得分為40.5分,若規(guī)定大于平均得分為“滿意”,否則為“不滿意”,請完成下列表格:

“滿意”的人數(shù)

“不滿意”的人數(shù)

總計

16

14

總計

30

(3)根據(jù)上述表中數(shù)據(jù),利用獨立性檢驗的方法判斷,能否有99%的把握認為該企業(yè)員工“性別”與“工作是否滿意”有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四邊形ABEFABCD都是直角梯形,∠BAD=∠FAB=

90°,BC AD,BE FA,G,H分別為FA,F(xiàn)D的中點.

(1)證明四邊形BCHG是平行四邊形.

(2)C,D,F,E四點是否共面?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量m=(cosx,-1),n=,函數(shù)f(x)=(m+n)·m.

(1)求函數(shù)f(x)的最小正周期;

(2)已知a,b,c分別為△ABC內(nèi)角A,B,C的對邊,A為銳角,a=1,c=,且f(A)恰是函數(shù)f(x)在上的最大值,求A,b和△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小王、小李兩位同學(xué)玩擲骰子(骰子質(zhì)地均勻)游戲,規(guī)則:小王先擲一枚骰子,向上的點數(shù)記為x;小李后擲一枚骰子,向上的點數(shù)記為y,

(1)在直角坐標(biāo)系xOy,(x,y)為坐標(biāo)的點共有幾個?試求點(x,y)落在直線x+y=7上的概率;

(2)規(guī)定:x+y10,則小王贏;x+y4,則小李贏,其他情況不分輸贏.試問這個游戲規(guī)則公平嗎?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面給出四種說法:

①用相關(guān)指數(shù)R2來刻畫回歸效果,R2越小,說明模型的擬合效果越好;

②命題P:“x0∈R,x02﹣x0﹣1>0”的否定是¬P:“x∈R,x2﹣x﹣1≤0”;

③設(shè)隨機變量X服從正態(tài)分布N(0,1),若P(x>1)=p則P(﹣1<X<0)= ﹣p

④回歸直線一定過樣本點的中心( ).

其中正確的說法有( )

A. ①②③ B. ①②④ C. ②③④ D. ①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2016~2017·鄭州高一檢測)過點M(1,2)的直線l與圓C:(x-3)2+(y-4)2=25交于A,B兩點,C為圓心,當(dāng)∠ACB最小時,直線l的方程是 (  )

A. x-2y+3=0 B. 2xy-4=0

C. xy+1=0 D. xy-3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在公差不為零的等差數(shù)列{an}中,已知a1=1,且a1,a2,a5依次成等比數(shù)列.?dāng)?shù)列{bn}滿足bn+1=2bn-1,且b1=3.

(1)求{an},{bn}的通項公式;

(2)設(shè)數(shù)列的前n項和為Sn,試比較Sn與1-的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩支排球隊進行比賽,約定先勝3局者獲得比賽的勝利,比賽隨即結(jié)束.除第五局甲隊獲勝的概率是外,其余每局比賽甲隊獲勝的概率都是.假設(shè)各局比賽結(jié)果相互獨立.

1)分別求甲隊以30,3132獲勝的概率;

2)若比賽結(jié)果為3031,則勝利方得3分、對方得0分;若比賽結(jié)果為3:2,則勝利方得2分、對方得1.求甲隊得分X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案