設a是實數(shù),f(x)=a-
2
2x+1
(x∈R)
(1)求a的值,使函數(shù)f(x)為奇函數(shù);
(2)求證:對任意實數(shù)a,f(x)在R上是增函數(shù).
考點:函數(shù)奇偶性的性質(zhì),函數(shù)單調(diào)性的判斷與證明
專題:函數(shù)的性質(zhì)及應用
分析:(1)根據(jù)奇函數(shù)在零處有意義可得f(0)=0,建立等量關系,求出a
(2)運用函數(shù)的定義判斷證明函數(shù)的單調(diào)性,先在取兩個值x1,x2后進行作差變形,確定符號,最后下結論即可.
解答: 解:(1)∵f(x)為奇函數(shù),∴f(0)=0,解得a=1;
(2)證明:設x1,x2∈R,x1<x2
則f(x1)-f(x2
=a-
2
2x1+1
-a+
2
2x2+1
=
2(2x1-2x2)
(2x1+1)(2x2+1)
,
由于指數(shù)函數(shù)y=2x在R上是增函數(shù),
且x1<x2,所以2x1<2x2即2x1-2x2<0,
又由2x>0,得2x1+1>0,2x2+1>0,
∴f(x1)-f(x2)<0即f(x1)<f(x2),
所以,對于任意a,f(x)在R上為增函數(shù).
點評:本題考查了函數(shù)的奇偶性和單調(diào)性,函數(shù)是描述變量之間關系的數(shù)學模型,函數(shù)單調(diào)性是函數(shù)的“局部”性質(zhì),屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

寫出下列數(shù)列的一個通項公式(可以不寫過程):3,5,9,17,33,…

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
b
的夾角為120°,|
a
|=1,|
b
|=3,則|
a
-
b
|=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
=(cosα,sinα),
b
=(cosβ,-sinβ).
(1)若|
a
+
b
|=
2
,求證:
a
b

(2)若
c
=(
1
2
,
1
3
),
a
+
b
=
c
,求cos(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知(sinA+sinB+sinC)(sinB+sinC-sinA)=3sinBsinC.
(1)求角A的大小;
(2)設O為△ABC的外心(三角形各邊中垂線的交點),當BC=
13
,△ABC的面積為3
3
時,求
AO
BC
的值;
(3)設AD為△ABC的中線,當BC=2
3
時,求AD長的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四邊形ABCD內(nèi)接于圓O,DE與圓O相切于點D,AC∩BD=F,F(xiàn)為AC的中點,O∈BD,CD=
10
,BC=5,則AE=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓O的半徑為1,過圓外一點P作圓O的割線與圓O交于C,D兩點,若PC•PD=8,則線段PO的長度為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知|
a
|=6,|
b
|=8,
a
b
=22,則|
a
+
b
|為( 。
A、10B、12C、72D、144

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

南昌市為增強市民的交通安全意識,面向全市征召“小紅帽”志愿者在部分交通路口協(xié)助交警維持交通,把符合條件的1000名志愿者按年齡分組:第1組[20,25)、第2組[25,30)、第3組[30,35)、第4組[35,40)、第5組[40,45),得到的頻率分布直方圖如圖所示:
(1)若從第3、4、5組中用分層抽樣的方法抽取12名志愿者在五一節(jié)這天到廣場協(xié)助交警維持交通,應從第3、4、5組各抽取多少名志愿者?
(2)在(1)的條件下,南昌市決定在這12名志愿者中隨機抽取3名志愿者到學校宣講交通安全知識,若ξ表示抽出的3名志愿者中第3組的人數(shù),求ξ的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案