【題目】已知橢圓在左、右焦點分別為,,動點在橢圓上,的周長為6,且面積的最大值為.
(1)求的方程;
(2)設(shè)直線與的另一個交點為,過,分別作直線的垂線,垂足為,,與軸的交點為.若,,的面積成等差數(shù)列,求直線斜率的取值范圍.
【答案】(1);(2)
【解析】
(1)由題意列關(guān)于a,b的方程組,即可得到的方程;
(2) 設(shè)直線的方程為,聯(lián)立方程可得,利用韋達定理表示條件,以,進而得到直線斜率的取值范圍.
(1)因為是上的點,且,為的左、右焦點,所以,
又因為,的周長為6,
所以,
當(dāng)為短軸端點時,的面積最大,
所以,
又因為,解得,,,
所以的方程為.
(2)依題意,直線與軸不重合,故可設(shè)直線的方程為,
由消去得:,
設(shè),,則有且,.
設(shè),,的面積分別為,,,
因為,,成等差數(shù)列,所以,即,
則 ,
即,得,
又,,于是,
所以,由得,解得,
設(shè)直線的斜率為,則,所以,
解得或,
所以直線斜率的取值范圍是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD的一邊CD內(nèi)任取一點E,過E作對角線AC的平行線,交對角線BD于點G、交邊AD于點H、交邊BA的延長線于點F,聯(lián)結(jié)BH交DF于點M.求證:
(1)C、G、M三點共線;
(2)C、E、M、F四點共圓.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且經(jīng)過點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點的直線交橢圓于兩點,是軸上的點,若是以為斜邊的等腰直角三角形, 求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】最近的一次數(shù)學(xué)競賽共6道試題,每題答對得7分,答錯(或不答)得0分.賽后某參賽代表隊獲團體總分161分,且統(tǒng)計分?jǐn)?shù)時發(fā)現(xiàn):該隊任兩名選手至多答對兩道相同的題目.沒有三名選手都答對兩道相同的題目.試問該隊選手至少有多少人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某縣共有90間農(nóng)村淘寶服務(wù)站,隨機抽取5間,統(tǒng)計元旦期間的網(wǎng)購金額(單位:萬元)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個位數(shù).若網(wǎng)購金額(單位:萬元)不小于18的服務(wù)站定義為優(yōu)秀服務(wù)站,其余為非優(yōu)秀服務(wù)站.從隨機抽取的5間服務(wù)站中再任取2間作網(wǎng)購商品的調(diào)查,則恰有1間是優(yōu)秀服務(wù)站的概率為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某次投籃測試中,有兩種投籃方案:方案甲:先在A點投籃一次,以后都在B點投籃;方案乙:始終在B點投籃.每次投籃之間相互獨立.某選手在A點命中的概率為,命中一次記3分,沒有命中得0分;在B點命中的概率為,命中一次記2分,沒有命中得0分,用隨機變量表示該選手一次投籃測試的累計得分,如果的值不低于3分,則認為其通過測試并停止投籃,否則繼續(xù)投籃,但一次測試最多投籃3次.
(1)若該選手選擇方案甲,求測試結(jié)束后所得分的分布列和數(shù)學(xué)期望.
(2)試問該選手選擇哪種方案通過測試的可能性較大?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,以橢圓的2個焦點與1個短軸端點為頂點的三角形的面積為2。
(1)求橢圓的方程;
(2)如圖,斜率為k的直線l過橢圓的右焦點F,且與橢圓交與A,B兩點,以線段AB為直徑的圓截直線x=1所得的弦的長度為,求直線l的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,我國工業(yè)經(jīng)濟發(fā)展迅速,工業(yè)增加值連年攀升,某研究機構(gòu)統(tǒng)計了近十年(從2008年到2017年)的工業(yè)增加值(萬億元),如下表:
年份 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
工業(yè)增加值 | 13.2 | 13.8 | 16.5 | 19.5 | 20.9 | 22.2 | 23.4 | 23.7 | 24.8 | 28 |
依據(jù)表格數(shù)據(jù),得到下面的散點圖及一些統(tǒng)計量的值.
5.5 | 20.6 | 82.5 | 211.52 | 129.6 |
(1)根據(jù)散點圖和表中數(shù)據(jù),此研究機構(gòu)對工業(yè)增加值(萬億元)與年份序號的回歸方程類型進行了擬合實驗,研究人員甲采用函數(shù),其擬合指數(shù);研究人員乙采用函數(shù),其擬合指數(shù);研究人員丙采用線性函數(shù),請計算其擬合指數(shù),并用數(shù)據(jù)說明哪位研究人員的函數(shù)類型擬合效果最好.(注:相關(guān)系數(shù)與擬合指數(shù)滿足關(guān)系).
(2)根據(jù)(1)的判斷結(jié)果及統(tǒng)計值,建立關(guān)于的回歸方程(系數(shù)精確到0.01);
(3)預(yù)測到哪一年的工業(yè)增加值能突破30萬億元大關(guān).
附:樣本 的相關(guān)系數(shù),
,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年12月份,我國湖北武漢出現(xiàn)了新型冠狀病毒,人感染后會出現(xiàn)發(fā)熱、咳嗽、氣促和呼吸困難等,嚴(yán)重的可導(dǎo)致肺炎甚至危及生命.為了增強居民防護意識,增加居民防護知識,某居委會利用網(wǎng)絡(luò)舉辦社區(qū)線上預(yù)防新冠肺炎知識答題比賽,所有居民都參與了防護知識網(wǎng)上答卷,最終甲、乙兩人得分最高進入決賽,該社區(qū)設(shè)計了一個決賽方案:①甲、乙兩人各自從個問題中隨機抽個.已知這個問題中,甲能正確回答其中的個,而乙能正確回答每個問題的概率均為,甲、乙兩人對每個問題的回答相互獨立、互不影響;②答對題目個數(shù)多的人獲勝,若兩人答對題目數(shù)相同,則由乙再從剩下的道題中選一道作答,答對則判乙勝,答錯則判甲勝.
(1)求甲、乙兩人共答對個問題的概率;
(2)試判斷甲、乙誰更有可能獲勝?并說明理由;
(3)求乙答對題目數(shù)的分布列和期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com