在平面直角坐標系中,由x軸的正半軸、y軸的正半軸、曲線y=ex以及該曲線在x=a(a≥1)處的切線所圍成圖形的面積是


  1. A.
    ea
  2. B.
    ea-1
  3. C.
    數(shù)學公式ea
  4. D.
    數(shù)學公式ea-1
D
分析:根據(jù)導數(shù)的幾何意義求出函數(shù)f(x)在x=a處的導數(shù),從而求出切線的斜率,再用點斜式寫出切線方程,然后求出與坐標軸的交點坐標,最后利用所圍成圖形的面積等于曲邊梯形ODBC的面積減去△ADB的面積,利用定積分求出曲邊梯形ODBC的面積,即可求出所求.
解答:解:∵y=ex,∴y′=ex,故曲線y=ex在x=a處的斜率為ea,切線方程為y-ea=ea(x-a),
令y=0得x=a-1≥0.如圖所示,點A(a-1,0),D(a,0),,B(a,ea),兩坐標軸的正半軸,
曲線y=ex以及該曲線在x=a(a≥1)處的切線所圍成圖形的面積等于曲邊形ODBC的面積減去△ADB的面積,
曲邊形ODBC的面積為∫0aexdx=ea-1,△ADB的面積為|AD|.|DB|=×[a-(a-1)]ea=ea,
故所求的面積為ea-1-ea=ea-1.
故選D
點評:本題主要考查了利用導數(shù)研究曲線上某點切線方程,以及定積分的應用,同時考查了數(shù)形結合的思想,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,以O為極點,x正半軸為極軸建立極坐標系,曲線C的極坐標方程為:pcos(θ-
π3
)=1
,M,N分別為曲線C與x軸,y軸的交點,則MN的中點P在平面直角坐標系中的坐標為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)設α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,如果x與y都是整數(shù),就稱點(x,y)為整點,下列命題中正確的是
 
(寫出所有正確命題的編號).
①存在這樣的直線,既不與坐標軸平行又不經過任何整點
②如果k與b都是無理數(shù),則直線y=kx+b不經過任何整點
③直線l經過無窮多個整點,當且僅當l經過兩個不同的整點
④直線y=kx+b經過無窮多個整點的充分必要條件是:k與b都是有理數(shù)
⑤存在恰經過一個整點的直線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,下列函數(shù)圖象關于原點對稱的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,以點(1,0)為圓心,r為半徑作圓,依次與拋物線y2=x交于A、B、C、D四點,若AC與BD的交點F恰好為拋物線的焦點,則r=
 

查看答案和解析>>

同步練習冊答案