15.某校從參加高一年級期中考試的學生中隨機抽取60名學生,將其數(shù)學成績(均為整數(shù))分成六段[40,50),[50,60),…,[90,100]后得到如圖所示的部分頻率分布直方圖.在統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值作為代表,觀察圖形的信息,據(jù)此估計本次考試的平均分為71.

分析 同一組數(shù)據(jù)常用該組區(qū)間的中點值作為代表,將中點值與每一組的頻率相乘再求出它們的和即可求出本次考試的平均分

解答 解:在頻率分布直方圖中,所有小長方形的面積和為1,
設[70,80)的小長方形面積為x,則(0.01+0.015×2+0.025+0.005)×10+x=1,
解得x=0.3,即該組頻率為0.3,
所以本次考試的平均分為45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71.
答案:71

點評 本題主要考查了頻率及頻率分布直方圖,以及平均數(shù)的有關(guān)問題,考查運用統(tǒng)計知識解決簡單實際問題的能力,數(shù)據(jù)處理能力和運用意識.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

13.設集合A={x|x2-3x+2=0},B={x|2x2-ax+2=0},若A∪B=A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.在平面直角坐標系xOy中,點A,B是圓x2+y2-6x+5=0上的兩個動點,且滿足$|AB|=2\sqrt{3}$,則$|\overrightarrow{OA}+\overrightarrow{OB}|$的最小值為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,A、B是海岸線OM、ON上的兩個碼頭,海中小島有碼頭Q到海岸線OM、ON的距離分別為2km、$\frac{7\sqrt{10}}{5}$km.測得tan∠MON=-3,OA=6km.以點O為坐標原點,射線OM為x軸的正半軸,建立如圖所示的直角坐標系.一艘游輪以18$\sqrt{2}$km/小時的平均速度在水上旅游線AB航行(將航線AB看作直線,碼頭Q在第一象限,航線AB經(jīng)過Q).
(1)問游輪自碼頭A沿$\overrightarrow{AB}$方向開往碼頭B共需多少分鐘?
(2)海中有一處景點P(設點P在xOy平面內(nèi),PQ⊥OM,且PQ=6km),游輪無法靠近.求游輪在水上旅游線AB航行時離景點P最近的點C的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.過點A(0,a)作直線與圓E:(x-2)2+y2=1交于B,C兩點,在線段BC上取滿足BP:PC=AB:AC的點P.
(Ⅰ)求P點的軌跡方程;
(Ⅱ)設直線2x-ay-3=0與圓E交于M、N兩點,求△EMN(E為圓心)面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.設計流程圖計算S=1+2+3+…+100,并寫出相應語句.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若x1,x2,x3,…,xn的平均數(shù)為$\overline{x}$,標準差為s,則x1+a,x2+a,…,xn+a的平均數(shù)和標準差分別為( 。
A.$\overline{x}$+a,sB.a$\overline{x}$,s2C.a2$\overline{x}$,s2+aD.$\overline{x}$+a2,s+a2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.在△ABC中,∠ABC=60°,AB=2,BC=6,在BC上任取一點D,則使△ABD是以∠BAD為鈍角的三角形的概率為( 。
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.在△ABC中,|AB|=4,|AC|=2,∠A=60°,|BC|=2$\sqrt{3}$.

查看答案和解析>>

同步練習冊答案