【題目】新零售模式的背景下,某大型零售公司推廣線下分店,計(jì)劃在S市的A區(qū)開設(shè)分店,為了確定在該區(qū)開設(shè)分店的個(gè)數(shù),該公司對該市已開設(shè)分店的其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.x表示在各區(qū)開設(shè)分店的個(gè)數(shù),y表示這個(gè)x個(gè)分店的年收入之和.

(1)該公司已經(jīng)過初步判斷,可用線性回歸模型擬合yx的關(guān)系,求y關(guān)于x的線性回歸方程

(2)假設(shè)該公司在A區(qū)獲得的總年利潤z(單位:百萬元)xy之間的關(guān)系為,請結(jié)合(1)中的線性回歸方程,估算該公司應(yīng)在A區(qū)開設(shè)多少個(gè)分店時(shí),才能使A區(qū)平均每個(gè)分店的年利潤最大?

(參考公式:,其中,)

【答案】(1);(2)該公司應(yīng)開設(shè)4個(gè)分店時(shí),在該區(qū)的每個(gè)分店的平均利潤最大

【解析】

1)由表中數(shù)據(jù)先求得.再結(jié)合公式分別求得,即可得y關(guān)于x的線性回歸方程.

2)將(1)中所得結(jié)果代入,進(jìn)而表示出每個(gè)分店的平均利潤,結(jié)合基本不等式即可求得最值及取最值時(shí)自變量的值.

1)由表中數(shù)據(jù)和參考數(shù)據(jù)得:

,,

因而可得,,

再代入公式計(jì)算可知,

,

.

2)由題意,可知總收入的預(yù)報(bào)值x之間的關(guān)系為:,

設(shè)該區(qū)每個(gè)分店的平均利潤為t,則,

t的預(yù)報(bào)值x之間的關(guān)系為,

當(dāng)且僅當(dāng)時(shí)取等號,(舍)

則當(dāng)時(shí),取到最大值,

故該公司應(yīng)開設(shè)4個(gè)分店時(shí),在該區(qū)的每個(gè)分店的平均利潤最大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象關(guān)于原點(diǎn)對稱,其中為常數(shù).

1)求的值;

2)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍;

3若關(guān)于的方程上有解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C:為參數(shù))和定點(diǎn),,是曲線C的左,右焦點(diǎn).

(Ⅰ)求經(jīng)過點(diǎn)且垂直于直線的直線的參數(shù)方程;

(Ⅱ)以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,求直線的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)高一年級共8個(gè)班,現(xiàn)從高一年級選10名同學(xué)組成社區(qū)服務(wù)小組,其中高一(1)班選取3名同學(xué),其它各班各選取1名同學(xué).現(xiàn)從這10名同學(xué)中隨機(jī)選取3名同學(xué),到社區(qū)老年中心參加尊老愛老活動(每位同學(xué)被選到的可能性相同).

1)求選出的3名同學(xué)來自不同班級的概率;

2)設(shè)X為選出同學(xué)中高一(1)班同學(xué)的人數(shù),求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù),若存在實(shí)數(shù)對,使得等式對定義域中的任意都成立,則稱函數(shù)型函數(shù)”.

1)若型函數(shù),且,求滿足條件的實(shí)數(shù)對

2)已知函數(shù).函數(shù)型函數(shù),對應(yīng)的實(shí)數(shù)對,當(dāng)時(shí),.若對任意時(shí),都存在,使得,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)設(shè)函數(shù),討論函數(shù)在區(qū)間內(nèi)的零點(diǎn)個(gè)數(shù);

2)若對任意,總存在,使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】原命題:“, 為兩個(gè)實(shí)數(shù),若,則 中至少有一個(gè)不小于1”,下列說法錯(cuò)誤的是( )

A. 逆命題為:若 中至少有一個(gè)不小于1,則,為假命題

B. 否命題為:若,則 都小于1,為假命題

C. 逆否命題為:若, 都小于1,則,為真命題

D. ”是“, 中至少有一個(gè)不小于1”的必要不充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了研究期中考試前學(xué)生所做數(shù)學(xué)模擬試題的套數(shù)與考試成績的關(guān)系,統(tǒng)計(jì)了五個(gè)班做的模擬試卷套數(shù)量及期中考試的平均分如下:

套(x)

7

6

6

5

6

數(shù)學(xué)平均分(y)

125

120

110

100

115

(Ⅰ) 若x與y成線性相關(guān),則某班做了8套模擬試題,預(yù)計(jì)平均分為多少?

(2)期中考試對學(xué)生進(jìn)行獎勵,考入年級前200名,獲一等獎學(xué)金500元;考入年級201—500 名,獲二等獎學(xué)金300元;考入年級501名以后的學(xué)生生將不能獲得獎學(xué)金。甲、乙兩名學(xué)生獲一等獎學(xué)金的概率均為,獲二等獎學(xué)金的概率均為,.若甲、乙兩名學(xué)生獲得每個(gè)等級的獎學(xué)金是相互獨(dú)立的,求甲、乙兩名學(xué)生所獲得獎學(xué)金總金額X 的分布列及數(shù)學(xué)期望。

附: , 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是矩形, 垂直于底面, ,點(diǎn)為線段(不含端點(diǎn))上一點(diǎn).

(1)當(dāng)是線段的中點(diǎn)時(shí),求與平面所成角的正弦值;

(2)已知二面角的正弦值為,求的值.

查看答案和解析>>

同步練習(xí)冊答案